Merge pull request #96 from tpoisonooo/support-siliconcloud

feat(examples): support siliconcloud free API
This commit is contained in:
zrguo
2024-10-23 11:02:42 +08:00
committed by GitHub
4 changed files with 129 additions and 2 deletions

View File

@@ -629,6 +629,7 @@ def extract_queries(file_path):
├── lightrag_ollama_demo.py
├── lightrag_openai_compatible_demo.py
├── lightrag_openai_demo.py
├── lightrag_siliconcloud_demo.py
└── vram_management_demo.py
├── lightrag
├── __init__.py

View File

@@ -0,0 +1,79 @@
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, siliconcloud_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"Qwen/Qwen2.5-7B-Instruct",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.siliconflow.cn/v1/",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await siliconcloud_embedding(
texts,
model="netease-youdao/bce-embedding-base_v1",
api_key=os.getenv("UPSTAGE_API_KEY"),
max_token_size=int(512 * 1.5)
)
# function test
async def test_funcs():
result = await llm_model_func("How are you?")
print("llm_model_func: ", result)
result = await embedding_func(["How are you?"])
print("embedding_func: ", result)
asyncio.run(test_funcs())
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=768, max_token_size=512, func=embedding_func
),
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)

View File

@@ -2,8 +2,11 @@ import os
import copy
import json
import aioboto3
import aiohttp
import numpy as np
import ollama
import base64
import struct
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
from tenacity import (
retry,
@@ -312,7 +315,7 @@ async def ollama_model_complete(
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(
@@ -332,6 +335,49 @@ async def openai_embedding(
)
return np.array([dp.embedding for dp in response.data])
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def siliconcloud_embedding(
texts: list[str],
model: str = "netease-youdao/bce-embedding-base_v1",
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
max_token_size: int = 512,
api_key: str = None,
) -> np.ndarray:
if api_key and not api_key.startswith('Bearer '):
api_key = 'Bearer ' + api_key
headers = {
"Authorization": api_key,
"Content-Type": "application/json"
}
truncate_texts = [text[0:max_token_size] for text in texts]
payload = {
"model": model,
"input": truncate_texts,
"encoding_format": "base64"
}
base64_strings = []
async with aiohttp.ClientSession() as session:
async with session.post(base_url, headers=headers, json=payload) as response:
content = await response.json()
if 'code' in content:
raise ValueError(content)
base64_strings = [item['embedding'] for item in content['data']]
embeddings = []
for string in base64_strings:
decode_bytes = base64.b64decode(string)
n = len(decode_bytes) // 4
float_array = struct.unpack('<' + 'f' * n, decode_bytes)
embeddings.append(float_array)
return np.array(embeddings)
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
# @retry(

View File

@@ -11,4 +11,5 @@ tiktoken
torch
transformers
xxhash
pyvis
pyvis
aiohttp