docs: Add Token Statistics Function Description in README
This commit is contained in:
48
README-zh.md
48
README-zh.md
@@ -410,6 +410,54 @@ if __name__ == "__main__":
|
||||
|
||||
</details>
|
||||
|
||||
### Token统计功能
|
||||
<details>
|
||||
<summary> <b>概述和使用</b> </summary>
|
||||
|
||||
LightRAG提供了TokenTracker工具来跟踪和管理大模型的token消耗。这个功能对于控制API成本和优化性能特别有用。
|
||||
|
||||
#### 使用方法
|
||||
|
||||
```python
|
||||
from lightrag.utils import TokenTracker
|
||||
|
||||
# 创建TokenTracker实例
|
||||
token_tracker = TokenTracker()
|
||||
|
||||
# 方法1:使用上下文管理器(推荐)
|
||||
# 适用于需要自动跟踪token使用的场景
|
||||
with token_tracker:
|
||||
result1 = await llm_model_func("你的问题1")
|
||||
result2 = await llm_model_func("你的问题2")
|
||||
|
||||
# 方法2:手动添加token使用记录
|
||||
# 适用于需要更精细控制token统计的场景
|
||||
token_tracker.reset()
|
||||
|
||||
rag.insert()
|
||||
|
||||
rag.query("你的问题1", param=QueryParam(mode="naive"))
|
||||
rag.query("你的问题2", param=QueryParam(mode="mix"))
|
||||
|
||||
# 显示总token使用量(包含插入和查询操作)
|
||||
print("Token usage:", token_tracker.get_usage())
|
||||
```
|
||||
|
||||
#### 使用建议
|
||||
- 在长会话或批量操作中使用上下文管理器,可以自动跟踪所有token消耗
|
||||
- 对于需要分段统计的场景,使用手动模式并适时调用reset()
|
||||
- 定期检查token使用情况,有助于及时发现异常消耗
|
||||
- 在开发测试阶段积极使用此功能,以便优化生产环境的成本
|
||||
|
||||
#### 实际应用示例
|
||||
您可以参考以下示例来实现token统计:
|
||||
- `examples/lightrag_gemini_track_token_demo.py`:使用Google Gemini模型的token统计示例
|
||||
- `examples/lightrag_siliconcloud_track_token_demo.py`:使用SiliconCloud模型的token统计示例
|
||||
|
||||
这些示例展示了如何在不同模型和场景下有效地使用TokenTracker功能。
|
||||
|
||||
</details>
|
||||
|
||||
### 对话历史
|
||||
|
||||
LightRAG现在通过对话历史功能支持多轮对话。以下是使用方法:
|
||||
|
49
README.md
49
README.md
@@ -443,6 +443,55 @@ if __name__ == "__main__":
|
||||
|
||||
</details>
|
||||
|
||||
### Token Usage Tracking
|
||||
|
||||
<details>
|
||||
<summary> <b>Overview and Usage</b> </summary>
|
||||
|
||||
LightRAG provides a TokenTracker tool to monitor and manage token consumption by large language models. This feature is particularly useful for controlling API costs and optimizing performance.
|
||||
|
||||
#### Usage
|
||||
|
||||
```python
|
||||
from lightrag.utils import TokenTracker
|
||||
|
||||
# Create TokenTracker instance
|
||||
token_tracker = TokenTracker()
|
||||
|
||||
# Method 1: Using context manager (Recommended)
|
||||
# Suitable for scenarios requiring automatic token usage tracking
|
||||
with token_tracker:
|
||||
result1 = await llm_model_func("your question 1")
|
||||
result2 = await llm_model_func("your question 2")
|
||||
|
||||
# Method 2: Manually adding token usage records
|
||||
# Suitable for scenarios requiring more granular control over token statistics
|
||||
token_tracker.reset()
|
||||
|
||||
rag.insert()
|
||||
|
||||
rag.query("your question 1", param=QueryParam(mode="naive"))
|
||||
rag.query("your question 2", param=QueryParam(mode="mix"))
|
||||
|
||||
# Display total token usage (including insert and query operations)
|
||||
print("Token usage:", token_tracker.get_usage())
|
||||
```
|
||||
|
||||
#### Usage Tips
|
||||
- Use context managers for long sessions or batch operations to automatically track all token consumption
|
||||
- For scenarios requiring segmented statistics, use manual mode and call reset() when appropriate
|
||||
- Regular checking of token usage helps detect abnormal consumption early
|
||||
- Actively use this feature during development and testing to optimize production costs
|
||||
|
||||
#### Practical Examples
|
||||
You can refer to these examples for implementing token tracking:
|
||||
- `examples/lightrag_gemini_track_token_demo.py`: Token tracking example using Google Gemini model
|
||||
- `examples/lightrag_siliconcloud_track_token_demo.py`: Token tracking example using SiliconCloud model
|
||||
|
||||
These examples demonstrate how to effectively use the TokenTracker feature with different models and scenarios.
|
||||
|
||||
</details>
|
||||
|
||||
### Conversation History Support
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user