Change log level from info to debug for token count logging
This commit is contained in:
@@ -688,7 +688,7 @@ async def kg_query(
|
|||||||
return sys_prompt
|
return sys_prompt
|
||||||
|
|
||||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||||
logger.info(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||||
|
|
||||||
response = await use_model_func(
|
response = await use_model_func(
|
||||||
query,
|
query,
|
||||||
@@ -776,7 +776,7 @@ async def extract_keywords_only(
|
|||||||
)
|
)
|
||||||
|
|
||||||
len_of_prompts = len(encode_string_by_tiktoken(kw_prompt))
|
len_of_prompts = len(encode_string_by_tiktoken(kw_prompt))
|
||||||
logger.info(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||||||
|
|
||||||
# 5. Call the LLM for keyword extraction
|
# 5. Call the LLM for keyword extraction
|
||||||
use_model_func = global_config["llm_model_func"]
|
use_model_func = global_config["llm_model_func"]
|
||||||
@@ -941,7 +941,7 @@ async def mix_kg_vector_query(
|
|||||||
chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}"
|
chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}"
|
||||||
formatted_chunks.append(chunk_text)
|
formatted_chunks.append(chunk_text)
|
||||||
|
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate chunks from {len(chunks)} to {len(formatted_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
f"Truncate chunks from {len(chunks)} to {len(formatted_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
||||||
)
|
)
|
||||||
return "\n--New Chunk--\n".join(formatted_chunks)
|
return "\n--New Chunk--\n".join(formatted_chunks)
|
||||||
@@ -977,7 +977,7 @@ async def mix_kg_vector_query(
|
|||||||
return sys_prompt
|
return sys_prompt
|
||||||
|
|
||||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||||
logger.info(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}")
|
logger.debug(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}")
|
||||||
|
|
||||||
# 6. Generate response
|
# 6. Generate response
|
||||||
response = await use_model_func(
|
response = await use_model_func(
|
||||||
@@ -1102,7 +1102,7 @@ async def _build_query_context(
|
|||||||
entities_tokens = len(encode_string_by_tiktoken(entities_context))
|
entities_tokens = len(encode_string_by_tiktoken(entities_context))
|
||||||
relations_tokens = len(encode_string_by_tiktoken(relations_context))
|
relations_tokens = len(encode_string_by_tiktoken(relations_context))
|
||||||
text_units_tokens = len(encode_string_by_tiktoken(text_units_context))
|
text_units_tokens = len(encode_string_by_tiktoken(text_units_context))
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Context Tokens - Total: {contex_tokens}, Entities: {entities_tokens}, Relations: {relations_tokens}, Chunks: {text_units_tokens}"
|
f"Context Tokens - Total: {contex_tokens}, Entities: {entities_tokens}, Relations: {relations_tokens}, Chunks: {text_units_tokens}"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1157,7 +1157,7 @@ async def _get_node_data(
|
|||||||
key=lambda x: x["description"],
|
key=lambda x: x["description"],
|
||||||
max_token_size=query_param.max_token_for_local_context,
|
max_token_size=query_param.max_token_for_local_context,
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1295,7 +1295,7 @@ async def _find_most_related_text_unit_from_entities(
|
|||||||
max_token_size=query_param.max_token_for_text_unit,
|
max_token_size=query_param.max_token_for_text_unit,
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
|
f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1341,7 +1341,7 @@ async def _find_most_related_edges_from_entities(
|
|||||||
max_token_size=query_param.max_token_for_global_context,
|
max_token_size=query_param.max_token_for_global_context,
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate relations from {len(all_edges)} to {len(all_edges_data)} (max tokens:{query_param.max_token_for_global_context})"
|
f"Truncate relations from {len(all_edges)} to {len(all_edges_data)} (max tokens:{query_param.max_token_for_global_context})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1398,7 +1398,7 @@ async def _get_edge_data(
|
|||||||
key=lambda x: x["description"],
|
key=lambda x: x["description"],
|
||||||
max_token_size=query_param.max_token_for_global_context,
|
max_token_size=query_param.max_token_for_global_context,
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate relations from {len_edge_datas} to {len(edge_datas)} (max tokens:{query_param.max_token_for_global_context})"
|
f"Truncate relations from {len_edge_datas} to {len(edge_datas)} (max tokens:{query_param.max_token_for_global_context})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1506,7 +1506,7 @@ async def _find_most_related_entities_from_relationships(
|
|||||||
key=lambda x: x["description"],
|
key=lambda x: x["description"],
|
||||||
max_token_size=query_param.max_token_for_local_context,
|
max_token_size=query_param.max_token_for_local_context,
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1564,7 +1564,7 @@ async def _find_related_text_unit_from_relationships(
|
|||||||
max_token_size=query_param.max_token_for_text_unit,
|
max_token_size=query_param.max_token_for_text_unit,
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
|
f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1635,7 +1635,7 @@ async def naive_query(
|
|||||||
logger.warning("No chunks left after truncation")
|
logger.warning("No chunks left after truncation")
|
||||||
return PROMPTS["fail_response"]
|
return PROMPTS["fail_response"]
|
||||||
|
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Truncate chunks from {len(chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
f"Truncate chunks from {len(chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1807,7 +1807,7 @@ async def kg_query_with_keywords(
|
|||||||
return sys_prompt
|
return sys_prompt
|
||||||
|
|
||||||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||||||
logger.info(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}")
|
logger.debug(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}")
|
||||||
|
|
||||||
response = await use_model_func(
|
response = await use_model_func(
|
||||||
query,
|
query,
|
||||||
|
Reference in New Issue
Block a user