Change log level from info to debug for token count logging

This commit is contained in:
yangdx
2025-02-16 22:42:53 +08:00
parent 8f6e9fcf50
commit b450430109

View File

@@ -688,7 +688,7 @@ async def kg_query(
return sys_prompt return sys_prompt
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt)) len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
logger.info(f"[kg_query]Prompt Tokens: {len_of_prompts}") logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
response = await use_model_func( response = await use_model_func(
query, query,
@@ -776,7 +776,7 @@ async def extract_keywords_only(
) )
len_of_prompts = len(encode_string_by_tiktoken(kw_prompt)) len_of_prompts = len(encode_string_by_tiktoken(kw_prompt))
logger.info(f"[kg_query]Prompt Tokens: {len_of_prompts}") logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
# 5. Call the LLM for keyword extraction # 5. Call the LLM for keyword extraction
use_model_func = global_config["llm_model_func"] use_model_func = global_config["llm_model_func"]
@@ -941,7 +941,7 @@ async def mix_kg_vector_query(
chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}" chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}"
formatted_chunks.append(chunk_text) formatted_chunks.append(chunk_text)
logger.info( logger.debug(
f"Truncate chunks from {len(chunks)} to {len(formatted_chunks)} (max tokens:{query_param.max_token_for_text_unit})" f"Truncate chunks from {len(chunks)} to {len(formatted_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
) )
return "\n--New Chunk--\n".join(formatted_chunks) return "\n--New Chunk--\n".join(formatted_chunks)
@@ -977,7 +977,7 @@ async def mix_kg_vector_query(
return sys_prompt return sys_prompt
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt)) len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
logger.info(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}") logger.debug(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}")
# 6. Generate response # 6. Generate response
response = await use_model_func( response = await use_model_func(
@@ -1102,7 +1102,7 @@ async def _build_query_context(
entities_tokens = len(encode_string_by_tiktoken(entities_context)) entities_tokens = len(encode_string_by_tiktoken(entities_context))
relations_tokens = len(encode_string_by_tiktoken(relations_context)) relations_tokens = len(encode_string_by_tiktoken(relations_context))
text_units_tokens = len(encode_string_by_tiktoken(text_units_context)) text_units_tokens = len(encode_string_by_tiktoken(text_units_context))
logger.info( logger.debug(
f"Context Tokens - Total: {contex_tokens}, Entities: {entities_tokens}, Relations: {relations_tokens}, Chunks: {text_units_tokens}" f"Context Tokens - Total: {contex_tokens}, Entities: {entities_tokens}, Relations: {relations_tokens}, Chunks: {text_units_tokens}"
) )
@@ -1157,7 +1157,7 @@ async def _get_node_data(
key=lambda x: x["description"], key=lambda x: x["description"],
max_token_size=query_param.max_token_for_local_context, max_token_size=query_param.max_token_for_local_context,
) )
logger.info( logger.debug(
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})" f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
) )
@@ -1295,7 +1295,7 @@ async def _find_most_related_text_unit_from_entities(
max_token_size=query_param.max_token_for_text_unit, max_token_size=query_param.max_token_for_text_unit,
) )
logger.info( logger.debug(
f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})" f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
) )
@@ -1341,7 +1341,7 @@ async def _find_most_related_edges_from_entities(
max_token_size=query_param.max_token_for_global_context, max_token_size=query_param.max_token_for_global_context,
) )
logger.info( logger.debug(
f"Truncate relations from {len(all_edges)} to {len(all_edges_data)} (max tokens:{query_param.max_token_for_global_context})" f"Truncate relations from {len(all_edges)} to {len(all_edges_data)} (max tokens:{query_param.max_token_for_global_context})"
) )
@@ -1398,7 +1398,7 @@ async def _get_edge_data(
key=lambda x: x["description"], key=lambda x: x["description"],
max_token_size=query_param.max_token_for_global_context, max_token_size=query_param.max_token_for_global_context,
) )
logger.info( logger.debug(
f"Truncate relations from {len_edge_datas} to {len(edge_datas)} (max tokens:{query_param.max_token_for_global_context})" f"Truncate relations from {len_edge_datas} to {len(edge_datas)} (max tokens:{query_param.max_token_for_global_context})"
) )
@@ -1506,7 +1506,7 @@ async def _find_most_related_entities_from_relationships(
key=lambda x: x["description"], key=lambda x: x["description"],
max_token_size=query_param.max_token_for_local_context, max_token_size=query_param.max_token_for_local_context,
) )
logger.info( logger.debug(
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})" f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
) )
@@ -1564,7 +1564,7 @@ async def _find_related_text_unit_from_relationships(
max_token_size=query_param.max_token_for_text_unit, max_token_size=query_param.max_token_for_text_unit,
) )
logger.info( logger.debug(
f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})" f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
) )
@@ -1635,7 +1635,7 @@ async def naive_query(
logger.warning("No chunks left after truncation") logger.warning("No chunks left after truncation")
return PROMPTS["fail_response"] return PROMPTS["fail_response"]
logger.info( logger.debug(
f"Truncate chunks from {len(chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})" f"Truncate chunks from {len(chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
) )
@@ -1807,7 +1807,7 @@ async def kg_query_with_keywords(
return sys_prompt return sys_prompt
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt)) len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
logger.info(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}") logger.debug(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}")
response = await use_model_func( response = await use_model_func(
query, query,