This commit is contained in:
LarFii
2024-11-11 10:45:22 +08:00
parent 791917e9d6
commit b6b2e69773
10 changed files with 35 additions and 33 deletions

View File

@@ -53,4 +53,4 @@ VOLUME /data /logs
EXPOSE 7474 7473 7687
ENTRYPOINT ["tini", "-g", "--", "/startup/docker-entrypoint.sh"]
CMD ["neo4j"]
CMD ["neo4j"]

View File

@@ -196,7 +196,7 @@ rag = LightRAG(
### Using Neo4J for Storage
* For production level scenarios you will most likely want to leverage an enterprise solution
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
* See: https://hub.docker.com/_/neo4j
@@ -209,7 +209,7 @@ When you launch the project be sure to override the default KG: NetworkS
by specifying kg="Neo4JStorage".
# Note: Default settings use NetworkX
#Initialize LightRAG with Neo4J implementation.
#Initialize LightRAG with Neo4J implementation.
WORKING_DIR = "./local_neo4jWorkDir"
rag = LightRAG(
@@ -503,8 +503,8 @@ pip install fastapi uvicorn pydantic
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
export OPENAI_API_KEY="Your OpenAI API key" # Required
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
```
3. Run the API server:
@@ -923,4 +923,3 @@ primaryClass={cs.IR}
}
```
**Thank you for your interest in our work!**

View File

@@ -33,7 +33,7 @@ if not os.path.exists(WORKING_DIR):
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
LLM_MODEL,
@@ -66,9 +66,11 @@ async def get_embedding_dim():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func),
embedding_func=EmbeddingFunc(
embedding_dim=asyncio.run(get_embedding_dim()),
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
),
)
@@ -99,8 +101,13 @@ async def query_endpoint(request: QueryRequest):
try:
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(
None, lambda: rag.query(request.query,
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
None,
lambda: rag.query(
request.query,
param=QueryParam(
mode=request.mode, only_need_context=request.only_need_context
),
),
)
return Response(status="success", data=result)
except Exception as e:

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "0.0.8"
__version__ = "0.0.9"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -1,3 +1 @@
# print ("init package vars here. ......")

View File

@@ -146,11 +146,11 @@ class Neo4JStorage(BaseGraphStorage):
entity_name_label_target = target_node_id.strip('"')
"""
Find all edges between nodes of two given labels
Args:
source_node_label (str): Label of the source nodes
target_node_label (str): Label of the target nodes
Returns:
list: List of all relationships/edges found
"""

View File

@@ -61,7 +61,6 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
return loop
@dataclass
class LightRAG:
working_dir: str = field(

View File

@@ -560,19 +560,19 @@ async def _find_most_related_text_unit_from_entities(
if not this_edges:
continue
all_one_hop_nodes.update([e[1] for e in this_edges])
all_one_hop_nodes = list(all_one_hop_nodes)
all_one_hop_nodes_data = await asyncio.gather(
*[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes]
)
# Add null check for node data
all_one_hop_text_units_lookup = {
k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP]))
for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data)
if v is not None and "source_id" in v # Add source_id check
}
all_text_units_lookup = {}
for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)):
for c_id in this_text_units:
@@ -586,7 +586,7 @@ async def _find_most_related_text_unit_from_entities(
and c_id in all_one_hop_text_units_lookup[e[1]]
):
relation_counts += 1
chunk_data = await text_chunks_db.get_by_id(c_id)
if chunk_data is not None and "content" in chunk_data: # Add content check
all_text_units_lookup[c_id] = {
@@ -594,29 +594,28 @@ async def _find_most_related_text_unit_from_entities(
"order": index,
"relation_counts": relation_counts,
}
# Filter out None values and ensure data has content
all_text_units = [
{"id": k, **v}
for k, v in all_text_units_lookup.items()
{"id": k, **v}
for k, v in all_text_units_lookup.items()
if v is not None and v.get("data") is not None and "content" in v["data"]
]
if not all_text_units:
logger.warning("No valid text units found")
return []
all_text_units = sorted(
all_text_units,
key=lambda x: (x["order"], -x["relation_counts"])
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
)
all_text_units = truncate_list_by_token_size(
all_text_units,
key=lambda x: x["data"]["content"],
max_token_size=query_param.max_token_for_text_unit,
)
all_text_units = [t["data"] for t in all_text_units]
return all_text_units

View File

@@ -1,6 +1,6 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
from lightrag.llm import gpt_4o_mini_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio

View File

@@ -1,6 +1,6 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
from lightrag.llm import gpt_4o_mini_complete
#########