Linting
This commit is contained in:
@@ -53,4 +53,4 @@ VOLUME /data /logs
|
|||||||
EXPOSE 7474 7473 7687
|
EXPOSE 7474 7473 7687
|
||||||
|
|
||||||
ENTRYPOINT ["tini", "-g", "--", "/startup/docker-entrypoint.sh"]
|
ENTRYPOINT ["tini", "-g", "--", "/startup/docker-entrypoint.sh"]
|
||||||
CMD ["neo4j"]
|
CMD ["neo4j"]
|
||||||
|
@@ -196,7 +196,7 @@ rag = LightRAG(
|
|||||||
### Using Neo4J for Storage
|
### Using Neo4J for Storage
|
||||||
|
|
||||||
* For production level scenarios you will most likely want to leverage an enterprise solution
|
* For production level scenarios you will most likely want to leverage an enterprise solution
|
||||||
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
|
||||||
* See: https://hub.docker.com/_/neo4j
|
* See: https://hub.docker.com/_/neo4j
|
||||||
|
|
||||||
|
|
||||||
@@ -209,7 +209,7 @@ When you launch the project be sure to override the default KG: NetworkS
|
|||||||
by specifying kg="Neo4JStorage".
|
by specifying kg="Neo4JStorage".
|
||||||
|
|
||||||
# Note: Default settings use NetworkX
|
# Note: Default settings use NetworkX
|
||||||
#Initialize LightRAG with Neo4J implementation.
|
#Initialize LightRAG with Neo4J implementation.
|
||||||
WORKING_DIR = "./local_neo4jWorkDir"
|
WORKING_DIR = "./local_neo4jWorkDir"
|
||||||
|
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
@@ -503,8 +503,8 @@ pip install fastapi uvicorn pydantic
|
|||||||
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
|
||||||
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
|
||||||
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
export OPENAI_API_KEY="Your OpenAI API key" # Required
|
||||||
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
|
||||||
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run the API server:
|
3. Run the API server:
|
||||||
@@ -923,4 +923,3 @@ primaryClass={cs.IR}
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
**Thank you for your interest in our work!**
|
**Thank you for your interest in our work!**
|
||||||
|
|
||||||
|
@@ -33,7 +33,7 @@ if not os.path.exists(WORKING_DIR):
|
|||||||
|
|
||||||
|
|
||||||
async def llm_model_func(
|
async def llm_model_func(
|
||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
return await openai_complete_if_cache(
|
return await openai_complete_if_cache(
|
||||||
LLM_MODEL,
|
LLM_MODEL,
|
||||||
@@ -66,9 +66,11 @@ async def get_embedding_dim():
|
|||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=llm_model_func,
|
llm_model_func=llm_model_func,
|
||||||
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
embedding_func=EmbeddingFunc(
|
||||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||||
func=embedding_func),
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||||
|
func=embedding_func,
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -99,8 +101,13 @@ async def query_endpoint(request: QueryRequest):
|
|||||||
try:
|
try:
|
||||||
loop = asyncio.get_event_loop()
|
loop = asyncio.get_event_loop()
|
||||||
result = await loop.run_in_executor(
|
result = await loop.run_in_executor(
|
||||||
None, lambda: rag.query(request.query,
|
None,
|
||||||
param=QueryParam(mode=request.mode, only_need_context=request.only_need_context))
|
lambda: rag.query(
|
||||||
|
request.query,
|
||||||
|
param=QueryParam(
|
||||||
|
mode=request.mode, only_need_context=request.only_need_context
|
||||||
|
),
|
||||||
|
),
|
||||||
)
|
)
|
||||||
return Response(status="success", data=result)
|
return Response(status="success", data=result)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
@@ -1,5 +1,5 @@
|
|||||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||||
|
|
||||||
__version__ = "0.0.8"
|
__version__ = "0.0.9"
|
||||||
__author__ = "Zirui Guo"
|
__author__ = "Zirui Guo"
|
||||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||||
|
@@ -1,3 +1 @@
|
|||||||
# print ("init package vars here. ......")
|
# print ("init package vars here. ......")
|
||||||
|
|
||||||
|
|
||||||
|
@@ -146,11 +146,11 @@ class Neo4JStorage(BaseGraphStorage):
|
|||||||
entity_name_label_target = target_node_id.strip('"')
|
entity_name_label_target = target_node_id.strip('"')
|
||||||
"""
|
"""
|
||||||
Find all edges between nodes of two given labels
|
Find all edges between nodes of two given labels
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
source_node_label (str): Label of the source nodes
|
source_node_label (str): Label of the source nodes
|
||||||
target_node_label (str): Label of the target nodes
|
target_node_label (str): Label of the target nodes
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
list: List of all relationships/edges found
|
list: List of all relationships/edges found
|
||||||
"""
|
"""
|
||||||
|
@@ -61,7 +61,6 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|||||||
return loop
|
return loop
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class LightRAG:
|
class LightRAG:
|
||||||
working_dir: str = field(
|
working_dir: str = field(
|
||||||
|
@@ -560,19 +560,19 @@ async def _find_most_related_text_unit_from_entities(
|
|||||||
if not this_edges:
|
if not this_edges:
|
||||||
continue
|
continue
|
||||||
all_one_hop_nodes.update([e[1] for e in this_edges])
|
all_one_hop_nodes.update([e[1] for e in this_edges])
|
||||||
|
|
||||||
all_one_hop_nodes = list(all_one_hop_nodes)
|
all_one_hop_nodes = list(all_one_hop_nodes)
|
||||||
all_one_hop_nodes_data = await asyncio.gather(
|
all_one_hop_nodes_data = await asyncio.gather(
|
||||||
*[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes]
|
*[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes]
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add null check for node data
|
# Add null check for node data
|
||||||
all_one_hop_text_units_lookup = {
|
all_one_hop_text_units_lookup = {
|
||||||
k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP]))
|
k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP]))
|
||||||
for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data)
|
for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data)
|
||||||
if v is not None and "source_id" in v # Add source_id check
|
if v is not None and "source_id" in v # Add source_id check
|
||||||
}
|
}
|
||||||
|
|
||||||
all_text_units_lookup = {}
|
all_text_units_lookup = {}
|
||||||
for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)):
|
for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)):
|
||||||
for c_id in this_text_units:
|
for c_id in this_text_units:
|
||||||
@@ -586,7 +586,7 @@ async def _find_most_related_text_unit_from_entities(
|
|||||||
and c_id in all_one_hop_text_units_lookup[e[1]]
|
and c_id in all_one_hop_text_units_lookup[e[1]]
|
||||||
):
|
):
|
||||||
relation_counts += 1
|
relation_counts += 1
|
||||||
|
|
||||||
chunk_data = await text_chunks_db.get_by_id(c_id)
|
chunk_data = await text_chunks_db.get_by_id(c_id)
|
||||||
if chunk_data is not None and "content" in chunk_data: # Add content check
|
if chunk_data is not None and "content" in chunk_data: # Add content check
|
||||||
all_text_units_lookup[c_id] = {
|
all_text_units_lookup[c_id] = {
|
||||||
@@ -594,29 +594,28 @@ async def _find_most_related_text_unit_from_entities(
|
|||||||
"order": index,
|
"order": index,
|
||||||
"relation_counts": relation_counts,
|
"relation_counts": relation_counts,
|
||||||
}
|
}
|
||||||
|
|
||||||
# Filter out None values and ensure data has content
|
# Filter out None values and ensure data has content
|
||||||
all_text_units = [
|
all_text_units = [
|
||||||
{"id": k, **v}
|
{"id": k, **v}
|
||||||
for k, v in all_text_units_lookup.items()
|
for k, v in all_text_units_lookup.items()
|
||||||
if v is not None and v.get("data") is not None and "content" in v["data"]
|
if v is not None and v.get("data") is not None and "content" in v["data"]
|
||||||
]
|
]
|
||||||
|
|
||||||
if not all_text_units:
|
if not all_text_units:
|
||||||
logger.warning("No valid text units found")
|
logger.warning("No valid text units found")
|
||||||
return []
|
return []
|
||||||
|
|
||||||
all_text_units = sorted(
|
all_text_units = sorted(
|
||||||
all_text_units,
|
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
|
||||||
key=lambda x: (x["order"], -x["relation_counts"])
|
|
||||||
)
|
)
|
||||||
|
|
||||||
all_text_units = truncate_list_by_token_size(
|
all_text_units = truncate_list_by_token_size(
|
||||||
all_text_units,
|
all_text_units,
|
||||||
key=lambda x: x["data"]["content"],
|
key=lambda x: x["data"]["content"],
|
||||||
max_token_size=query_param.max_token_for_text_unit,
|
max_token_size=query_param.max_token_for_text_unit,
|
||||||
)
|
)
|
||||||
|
|
||||||
all_text_units = [t["data"] for t in all_text_units]
|
all_text_units = [t["data"] for t in all_text_units]
|
||||||
return all_text_units
|
return all_text_units
|
||||||
|
|
||||||
|
2
test.py
2
test.py
@@ -1,6 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
from lightrag.llm import gpt_4o_mini_complete
|
||||||
#########
|
#########
|
||||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||||
# import nest_asyncio
|
# import nest_asyncio
|
||||||
|
@@ -1,6 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
from lightrag import LightRAG, QueryParam
|
from lightrag import LightRAG, QueryParam
|
||||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
from lightrag.llm import gpt_4o_mini_complete
|
||||||
|
|
||||||
|
|
||||||
#########
|
#########
|
||||||
|
Reference in New Issue
Block a user