Merge branch 'Fix-pipeline-batch' into feat-node-expand
This commit is contained in:
@@ -769,7 +769,7 @@ class LightRAG:
|
||||
async with pipeline_status_lock:
|
||||
# Ensure only one worker is processing documents
|
||||
if not pipeline_status.get("busy", False):
|
||||
# 先检查是否有需要处理的文档
|
||||
|
||||
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
||||
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
||||
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
||||
@@ -781,12 +781,10 @@ class LightRAG:
|
||||
to_process_docs.update(failed_docs)
|
||||
to_process_docs.update(pending_docs)
|
||||
|
||||
# 如果没有需要处理的文档,直接返回,保留 pipeline_status 中的内容不变
|
||||
if not to_process_docs:
|
||||
logger.info("No documents to process")
|
||||
return
|
||||
|
||||
# 有文档需要处理,更新 pipeline_status
|
||||
pipeline_status.update(
|
||||
{
|
||||
"busy": True,
|
||||
@@ -825,7 +823,7 @@ class LightRAG:
|
||||
for i in range(0, len(to_process_docs), self.max_parallel_insert)
|
||||
]
|
||||
|
||||
log_message = f"Number of batches to process: {len(docs_batches)}."
|
||||
log_message = f"Processing {len(to_process_docs)} document(s) in {len(docs_batches)} batches"
|
||||
logger.info(log_message)
|
||||
|
||||
# Update pipeline status with current batch information
|
||||
@@ -834,140 +832,151 @@ class LightRAG:
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
batches: list[Any] = []
|
||||
# 3. iterate over batches
|
||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||
# Update current batch in pipeline status (directly, as it's atomic)
|
||||
pipeline_status["cur_batch"] += 1
|
||||
|
||||
async def batch(
|
||||
batch_idx: int,
|
||||
docs_batch: list[tuple[str, DocProcessingStatus]],
|
||||
size_batch: int,
|
||||
) -> None:
|
||||
log_message = (
|
||||
f"Start processing batch {batch_idx + 1} of {size_batch}."
|
||||
)
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
# 4. iterate over batch
|
||||
for doc_id_processing_status in docs_batch:
|
||||
doc_id, status_doc = doc_id_processing_status
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
async def process_document(
|
||||
doc_id: str,
|
||||
status_doc: DocProcessingStatus,
|
||||
split_by_character: str | None,
|
||||
split_by_character_only: bool,
|
||||
pipeline_status: dict,
|
||||
pipeline_status_lock: asyncio.Lock
|
||||
) -> None:
|
||||
"""Process single document"""
|
||||
try:
|
||||
# Generate chunks from document
|
||||
chunks: dict[str, Any] = {
|
||||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
}
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
# Create tasks with references for potential cancellation
|
||||
doc_status_task = asyncio.create_task(
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
status_doc.content,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
self.chunk_overlap_token_size,
|
||||
self.chunk_token_size,
|
||||
self.tiktoken_model_name,
|
||||
)
|
||||
}
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
# Create tasks with references for potential cancellation
|
||||
doc_status_task = asyncio.create_task(
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
chunks_vdb_task = asyncio.create_task(
|
||||
self.chunks_vdb.upsert(chunks)
|
||||
)
|
||||
chunks_vdb_task = asyncio.create_task(
|
||||
self.chunks_vdb.upsert(chunks)
|
||||
)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
full_docs_task = asyncio.create_task(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
)
|
||||
full_docs_task = asyncio.create_task(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
)
|
||||
)
|
||||
text_chunks_task = asyncio.create_task(
|
||||
self.text_chunks.upsert(chunks)
|
||||
)
|
||||
tasks = [
|
||||
doc_status_task,
|
||||
)
|
||||
text_chunks_task = asyncio.create_task(
|
||||
self.text_chunks.upsert(chunks)
|
||||
)
|
||||
tasks = [
|
||||
doc_status_task,
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
# Log error and update pipeline status
|
||||
error_msg = (
|
||||
f"Failed to process document {doc_id}: {str(e)}"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
async with pipeline_status_lock:
|
||||
pipeline_status["latest_message"] = error_msg
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
|
||||
# Cancel other tasks as they are no longer meaningful
|
||||
for task in [
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]
|
||||
try:
|
||||
await asyncio.gather(*tasks)
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
# Log error and update pipeline status
|
||||
error_msg = (
|
||||
f"Failed to process document {doc_id}: {str(e)}"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
pipeline_status["latest_message"] = error_msg
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
|
||||
# Cancel other tasks as they are no longer meaningful
|
||||
for task in [
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]:
|
||||
if not task.done():
|
||||
task.cancel()
|
||||
|
||||
# Update document status to failed
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
continue
|
||||
log_message = (
|
||||
f"Completed batch {batch_idx + 1} of {len(docs_batches)}."
|
||||
]:
|
||||
if not task.done():
|
||||
task.cancel()
|
||||
# Update document status to failed
|
||||
await self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
"created_at": status_doc.created_at,
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
}
|
||||
)
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
|
||||
# 3. iterate over batches
|
||||
total_batches = len(docs_batches)
|
||||
for batch_idx, docs_batch in enumerate(docs_batches):
|
||||
|
||||
await asyncio.gather(*batches)
|
||||
await self._insert_done()
|
||||
current_batch = batch_idx + 1
|
||||
log_message = f"Start processing batch {current_batch} of {total_batches}."
|
||||
logger.info(log_message)
|
||||
pipeline_status["cur_batch"] = current_batch
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
doc_tasks = []
|
||||
for doc_id, status_doc in docs_batch:
|
||||
doc_tasks.append(
|
||||
process_document(
|
||||
doc_id,
|
||||
status_doc,
|
||||
split_by_character,
|
||||
split_by_character_only,
|
||||
pipeline_status,
|
||||
pipeline_status_lock
|
||||
)
|
||||
)
|
||||
|
||||
# Process documents in one batch parallelly
|
||||
await asyncio.gather(*doc_tasks)
|
||||
await self._insert_done()
|
||||
|
||||
log_message = f"Completed batch {current_batch} of {total_batches}."
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
|
||||
# Check if there's a pending request to process more documents (with lock)
|
||||
has_pending_request = False
|
||||
@@ -1042,7 +1051,7 @@ class LightRAG:
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
log_message = "All Insert done"
|
||||
log_message = "All data persist to disk"
|
||||
logger.info(log_message)
|
||||
|
||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||
|
Reference in New Issue
Block a user