Added system prompt support in all modes
This commit is contained in:
13
README.md
13
README.md
@@ -171,7 +171,7 @@ rag = LightRAG(working_dir=WORKING_DIR)
|
||||
|
||||
# Create query parameters
|
||||
query_param = QueryParam(
|
||||
mode="hybrid", # or other mode: "local", "global", "hybrid"
|
||||
mode="hybrid", # or other mode: "local", "global", "hybrid", "mix" and "naive"
|
||||
)
|
||||
|
||||
# Example 1: Using the default system prompt
|
||||
@@ -184,11 +184,20 @@ print(response_default)
|
||||
# Example 2: Using a custom prompt
|
||||
custom_prompt = """
|
||||
You are an expert assistant in environmental science. Provide detailed and structured answers with examples.
|
||||
---Conversation History---
|
||||
{history}
|
||||
|
||||
---Knowledge Base---
|
||||
{context_data}
|
||||
|
||||
---Response Rules---
|
||||
|
||||
- Target format and length: {response_type}
|
||||
"""
|
||||
response_custom = rag.query(
|
||||
"What are the primary benefits of renewable energy?",
|
||||
param=query_param,
|
||||
prompt=custom_prompt # Pass the custom prompt
|
||||
system_prompt=custom_prompt # Pass the custom prompt
|
||||
)
|
||||
print(response_custom)
|
||||
```
|
||||
|
@@ -984,7 +984,10 @@ class LightRAG:
|
||||
await self._insert_done()
|
||||
|
||||
def query(
|
||||
self, query: str, param: QueryParam = QueryParam(), prompt: str | None = None
|
||||
self,
|
||||
query: str,
|
||||
param: QueryParam = QueryParam(),
|
||||
system_prompt: str | None = None,
|
||||
) -> str | Iterator[str]:
|
||||
"""
|
||||
Perform a sync query.
|
||||
@@ -999,13 +1002,13 @@ class LightRAG:
|
||||
"""
|
||||
loop = always_get_an_event_loop()
|
||||
|
||||
return loop.run_until_complete(self.aquery(query, param, prompt)) # type: ignore
|
||||
return loop.run_until_complete(self.aquery(query, param, system_prompt)) # type: ignore
|
||||
|
||||
async def aquery(
|
||||
self,
|
||||
query: str,
|
||||
param: QueryParam = QueryParam(),
|
||||
prompt: str | None = None,
|
||||
system_prompt: str | None = None,
|
||||
) -> str | AsyncIterator[str]:
|
||||
"""
|
||||
Perform a async query.
|
||||
@@ -1037,7 +1040,7 @@ class LightRAG:
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
)
|
||||
elif param.mode == "naive":
|
||||
response = await naive_query(
|
||||
@@ -1056,6 +1059,7 @@ class LightRAG:
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
system_prompt=system_prompt,
|
||||
)
|
||||
elif param.mode == "mix":
|
||||
response = await mix_kg_vector_query(
|
||||
@@ -1077,6 +1081,7 @@ class LightRAG:
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
system_prompt=system_prompt,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown mode {param.mode}")
|
||||
|
@@ -613,7 +613,7 @@ async def kg_query(
|
||||
query_param: QueryParam,
|
||||
global_config: dict[str, str],
|
||||
hashing_kv: BaseKVStorage | None = None,
|
||||
prompt: str | None = None,
|
||||
system_prompt: str | None = None,
|
||||
) -> str:
|
||||
# Handle cache
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
@@ -677,7 +677,7 @@ async def kg_query(
|
||||
query_param.conversation_history, query_param.history_turns
|
||||
)
|
||||
|
||||
sys_prompt_temp = prompt if prompt else PROMPTS["rag_response"]
|
||||
sys_prompt_temp = system_prompt if system_prompt else PROMPTS["rag_response"]
|
||||
sys_prompt = sys_prompt_temp.format(
|
||||
context_data=context,
|
||||
response_type=query_param.response_type,
|
||||
@@ -828,6 +828,7 @@ async def mix_kg_vector_query(
|
||||
query_param: QueryParam,
|
||||
global_config: dict[str, str],
|
||||
hashing_kv: BaseKVStorage | None = None,
|
||||
system_prompt: str | None = None,
|
||||
) -> str | AsyncIterator[str]:
|
||||
"""
|
||||
Hybrid retrieval implementation combining knowledge graph and vector search.
|
||||
@@ -962,15 +963,19 @@ async def mix_kg_vector_query(
|
||||
return {"kg_context": kg_context, "vector_context": vector_context}
|
||||
|
||||
# 5. Construct hybrid prompt
|
||||
sys_prompt = PROMPTS["mix_rag_response"].format(
|
||||
kg_context=kg_context
|
||||
if kg_context
|
||||
else "No relevant knowledge graph information found",
|
||||
vector_context=vector_context
|
||||
if vector_context
|
||||
else "No relevant text information found",
|
||||
response_type=query_param.response_type,
|
||||
history=history_context,
|
||||
sys_prompt = (
|
||||
system_prompt
|
||||
if system_prompt
|
||||
else PROMPTS["mix_rag_response"].format(
|
||||
kg_context=kg_context
|
||||
if kg_context
|
||||
else "No relevant knowledge graph information found",
|
||||
vector_context=vector_context
|
||||
if vector_context
|
||||
else "No relevant text information found",
|
||||
response_type=query_param.response_type,
|
||||
history=history_context,
|
||||
)
|
||||
)
|
||||
|
||||
if query_param.only_need_prompt:
|
||||
@@ -1599,6 +1604,7 @@ async def naive_query(
|
||||
query_param: QueryParam,
|
||||
global_config: dict[str, str],
|
||||
hashing_kv: BaseKVStorage | None = None,
|
||||
system_prompt: str | None = None,
|
||||
) -> str | AsyncIterator[str]:
|
||||
# Handle cache
|
||||
use_model_func = global_config["llm_model_func"]
|
||||
@@ -1651,7 +1657,7 @@ async def naive_query(
|
||||
query_param.conversation_history, query_param.history_turns
|
||||
)
|
||||
|
||||
sys_prompt_temp = PROMPTS["naive_rag_response"]
|
||||
sys_prompt_temp = system_prompt if system_prompt else PROMPTS["naive_rag_response"]
|
||||
sys_prompt = sys_prompt_temp.format(
|
||||
content_data=section,
|
||||
response_type=query_param.response_type,
|
||||
|
Reference in New Issue
Block a user