Merge branch 'jidodata-ykim/main'
This commit is contained in:
@@ -53,7 +53,6 @@ async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwar
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
|
@@ -0,0 +1,155 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.llama_index_impl import (
|
||||
llama_index_complete_if_cache,
|
||||
llama_index_embed,
|
||||
)
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from llama_index.llms.litellm import LiteLLM
|
||||
from llama_index.embeddings.litellm import LiteLLMEmbedding
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
nest_asyncio.apply()
|
||||
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = "./index_default"
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
|
||||
# Model configuration
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gemma-3-4b")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "arctic-embed")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
# LiteLLM configuration
|
||||
LITELLM_URL = os.environ.get("LITELLM_URL", "http://localhost:4000")
|
||||
print(f"LITELLM_URL: {LITELLM_URL}")
|
||||
LITELLM_KEY = os.environ.get("LITELLM_KEY", "sk-4JdvGFKqSA3S0k_5p0xufw")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# Initialize LLM function
|
||||
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||
try:
|
||||
# Initialize LiteLLM if not in kwargs
|
||||
if "llm_instance" not in kwargs:
|
||||
llm_instance = LiteLLM(
|
||||
model=f"openai/{LLM_MODEL}", # Format: "provider/model_name"
|
||||
api_base=LITELLM_URL,
|
||||
api_key=LITELLM_KEY,
|
||||
temperature=0.7,
|
||||
)
|
||||
kwargs["llm_instance"] = llm_instance
|
||||
|
||||
chat_kwargs = {}
|
||||
chat_kwargs["litellm_params"] = {
|
||||
"metadata": {
|
||||
"opik": {
|
||||
"project_name": "lightrag_llamaindex_litellm_opik_demo",
|
||||
"tags": ["lightrag", "litellm"],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
response = await llama_index_complete_if_cache(
|
||||
kwargs["llm_instance"],
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
chat_kwargs=chat_kwargs,
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
print(f"LLM request failed: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
# Initialize embedding function
|
||||
async def embedding_func(texts):
|
||||
try:
|
||||
embed_model = LiteLLMEmbedding(
|
||||
model_name=f"openai/{EMBEDDING_MODEL}",
|
||||
api_base=LITELLM_URL,
|
||||
api_key=LITELLM_KEY,
|
||||
)
|
||||
return await llama_index_embed(texts, embed_model=embed_model)
|
||||
except Exception as e:
|
||||
print(f"Embedding failed: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
# Get embedding dimension
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"embedding_dim={embedding_dim}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
)
|
||||
)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -95,7 +95,7 @@ async def llama_index_complete_if_cache(
|
||||
prompt: str,
|
||||
system_prompt: Optional[str] = None,
|
||||
history_messages: List[dict] = [],
|
||||
**kwargs,
|
||||
chat_kwargs={},
|
||||
) -> str:
|
||||
"""Complete the prompt using LlamaIndex."""
|
||||
try:
|
||||
@@ -122,13 +122,9 @@ async def llama_index_complete_if_cache(
|
||||
# Add current prompt
|
||||
formatted_messages.append(ChatMessage(role=MessageRole.USER, content=prompt))
|
||||
|
||||
# Get LLM instance from kwargs
|
||||
if "llm_instance" not in kwargs:
|
||||
raise ValueError("llm_instance must be provided in kwargs")
|
||||
llm = kwargs["llm_instance"]
|
||||
|
||||
# Get response
|
||||
response: ChatResponse = await llm.achat(messages=formatted_messages)
|
||||
response: ChatResponse = await model.achat(
|
||||
messages=formatted_messages, **chat_kwargs
|
||||
)
|
||||
|
||||
# In newer versions, the response is in message.content
|
||||
content = response.message.content
|
||||
|
Reference in New Issue
Block a user