Add custom KG insertion
This commit is contained in:
44
README.md
44
README.md
@@ -26,6 +26,7 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
||||
</div>
|
||||
|
||||
## 🎉 News
|
||||
- [x] [2024.11.25]🎯📢LightRAG now supports [custom KG insertion](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg).
|
||||
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author!
|
||||
- [x] [2024.11.12]🎯📢LightRAG now supports [Oracle Database 23ai for all storage types (KV, vector, and graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py).
|
||||
- [x] [2024.11.11]🎯📢LightRAG now supports [deleting entities by their names](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete-entity).
|
||||
@@ -327,6 +328,49 @@ with open("./newText.txt") as f:
|
||||
rag.insert(f.read())
|
||||
```
|
||||
|
||||
### Insert Custom KG
|
||||
|
||||
```python
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
custom_kg = {
|
||||
"entities": [
|
||||
{
|
||||
"entity_name": "CompanyA",
|
||||
"entity_type": "Organization",
|
||||
"description": "A major technology company",
|
||||
"source_id": "Source1"
|
||||
},
|
||||
{
|
||||
"entity_name": "ProductX",
|
||||
"entity_type": "Product",
|
||||
"description": "A popular product developed by CompanyA",
|
||||
"source_id": "Source1"
|
||||
}
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
"src_id": "CompanyA",
|
||||
"tgt_id": "ProductX",
|
||||
"description": "CompanyA develops ProductX",
|
||||
"keywords": "develop, produce",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source1"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
||||
```
|
||||
|
||||
### Delete Entity
|
||||
|
||||
```python
|
||||
|
108
examples/insert_custom_kg.py
Normal file
108
examples/insert_custom_kg.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./custom_kg"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
custom_kg = {
|
||||
"entities": [
|
||||
{
|
||||
"entity_name": "CompanyA",
|
||||
"entity_type": "Organization",
|
||||
"description": "A major technology company",
|
||||
"source_id": "Source1"
|
||||
},
|
||||
{
|
||||
"entity_name": "ProductX",
|
||||
"entity_type": "Product",
|
||||
"description": "A popular product developed by CompanyA",
|
||||
"source_id": "Source1"
|
||||
},
|
||||
{
|
||||
"entity_name": "PersonA",
|
||||
"entity_type": "Person",
|
||||
"description": "A renowned researcher in AI",
|
||||
"source_id": "Source2"
|
||||
},
|
||||
{
|
||||
"entity_name": "UniversityB",
|
||||
"entity_type": "Organization",
|
||||
"description": "A leading university specializing in technology and sciences",
|
||||
"source_id": "Source2"
|
||||
},
|
||||
{
|
||||
"entity_name": "CityC",
|
||||
"entity_type": "Location",
|
||||
"description": "A large metropolitan city known for its culture and economy",
|
||||
"source_id": "Source3"
|
||||
},
|
||||
{
|
||||
"entity_name": "EventY",
|
||||
"entity_type": "Event",
|
||||
"description": "An annual technology conference held in CityC",
|
||||
"source_id": "Source3"
|
||||
},
|
||||
{
|
||||
"entity_name": "CompanyD",
|
||||
"entity_type": "Organization",
|
||||
"description": "A financial services company specializing in insurance",
|
||||
"source_id": "Source4"
|
||||
},
|
||||
{
|
||||
"entity_name": "ServiceZ",
|
||||
"entity_type": "Service",
|
||||
"description": "An insurance product offered by CompanyD",
|
||||
"source_id": "Source4"
|
||||
}
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
"src_id": "CompanyA",
|
||||
"tgt_id": "ProductX",
|
||||
"description": "CompanyA develops ProductX",
|
||||
"keywords": "develop, produce",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source1"
|
||||
},
|
||||
{
|
||||
"src_id": "PersonA",
|
||||
"tgt_id": "UniversityB",
|
||||
"description": "PersonA works at UniversityB",
|
||||
"keywords": "employment, affiliation",
|
||||
"weight": 0.9,
|
||||
"source_id": "Source2"
|
||||
},
|
||||
{
|
||||
"src_id": "CityC",
|
||||
"tgt_id": "EventY",
|
||||
"description": "EventY is hosted in CityC",
|
||||
"keywords": "host, location",
|
||||
"weight": 0.8,
|
||||
"source_id": "Source3"
|
||||
},
|
||||
{
|
||||
"src_id": "CompanyD",
|
||||
"tgt_id": "ServiceZ",
|
||||
"description": "CompanyD provides ServiceZ",
|
||||
"keywords": "provide, offer",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source4"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
||||
|
||||
__version__ = "1.0.1"
|
||||
__version__ = "1.0.2"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -308,6 +308,108 @@ class LightRAG:
|
||||
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
def insert_custom_kg(self, custom_kg: dict):
|
||||
loop = always_get_an_event_loop()
|
||||
return loop.run_until_complete(self.ainsert_custom_kg(custom_kg))
|
||||
|
||||
async def ainsert_custom_kg(self, custom_kg: dict):
|
||||
update_storage = False
|
||||
try:
|
||||
# Insert entities into knowledge graph
|
||||
all_entities_data = []
|
||||
for entity_data in custom_kg.get("entities", []):
|
||||
entity_name = f'"{entity_data["entity_name"].upper()}"'
|
||||
entity_type = entity_data.get("entity_type", "UNKNOWN")
|
||||
description = entity_data.get("description", "No description provided")
|
||||
source_id = entity_data["source_id"]
|
||||
|
||||
# Prepare node data
|
||||
node_data = {
|
||||
"entity_type": entity_type,
|
||||
"description": description,
|
||||
"source_id": source_id,
|
||||
}
|
||||
# Insert node data into the knowledge graph
|
||||
await self.chunk_entity_relation_graph.upsert_node(
|
||||
entity_name, node_data=node_data
|
||||
)
|
||||
node_data["entity_name"] = entity_name
|
||||
all_entities_data.append(node_data)
|
||||
update_storage = True
|
||||
|
||||
# Insert relationships into knowledge graph
|
||||
all_relationships_data = []
|
||||
for relationship_data in custom_kg.get("relationships", []):
|
||||
src_id = f'"{relationship_data["src_id"].upper()}"'
|
||||
tgt_id = f'"{relationship_data["tgt_id"].upper()}"'
|
||||
description = relationship_data["description"]
|
||||
keywords = relationship_data["keywords"]
|
||||
weight = relationship_data.get("weight", 1.0)
|
||||
source_id = relationship_data["source_id"]
|
||||
|
||||
# Check if nodes exist in the knowledge graph
|
||||
for need_insert_id in [src_id, tgt_id]:
|
||||
if not (
|
||||
await self.chunk_entity_relation_graph.has_node(need_insert_id)
|
||||
):
|
||||
await self.chunk_entity_relation_graph.upsert_node(
|
||||
need_insert_id,
|
||||
node_data={
|
||||
"source_id": source_id,
|
||||
"description": "UNKNOWN",
|
||||
"entity_type": "UNKNOWN",
|
||||
},
|
||||
)
|
||||
|
||||
# Insert edge into the knowledge graph
|
||||
await self.chunk_entity_relation_graph.upsert_edge(
|
||||
src_id,
|
||||
tgt_id,
|
||||
edge_data={
|
||||
"weight": weight,
|
||||
"description": description,
|
||||
"keywords": keywords,
|
||||
"source_id": source_id,
|
||||
},
|
||||
)
|
||||
edge_data = {
|
||||
"src_id": src_id,
|
||||
"tgt_id": tgt_id,
|
||||
"description": description,
|
||||
"keywords": keywords,
|
||||
}
|
||||
all_relationships_data.append(edge_data)
|
||||
update_storage = True
|
||||
|
||||
# Insert entities into vector storage if needed
|
||||
if self.entities_vdb is not None:
|
||||
data_for_vdb = {
|
||||
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
|
||||
"content": dp["entity_name"] + dp["description"],
|
||||
"entity_name": dp["entity_name"],
|
||||
}
|
||||
for dp in all_entities_data
|
||||
}
|
||||
await self.entities_vdb.upsert(data_for_vdb)
|
||||
|
||||
# Insert relationships into vector storage if needed
|
||||
if self.relationships_vdb is not None:
|
||||
data_for_vdb = {
|
||||
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
|
||||
"src_id": dp["src_id"],
|
||||
"tgt_id": dp["tgt_id"],
|
||||
"content": dp["keywords"]
|
||||
+ dp["src_id"]
|
||||
+ dp["tgt_id"]
|
||||
+ dp["description"],
|
||||
}
|
||||
for dp in all_relationships_data
|
||||
}
|
||||
await self.relationships_vdb.upsert(data_for_vdb)
|
||||
finally:
|
||||
if update_storage:
|
||||
await self._insert_done()
|
||||
|
||||
def query(self, query: str, param: QueryParam = QueryParam()):
|
||||
loop = always_get_an_event_loop()
|
||||
return loop.run_until_complete(self.aquery(query, param))
|
||||
|
Reference in New Issue
Block a user