Merge pull request #846 from ArnoChenFx/db-connection-and-storage-lifecycle
Refactor Database Connection Management and Improve Storage Lifecycle Handling
This commit is contained in:
@@ -17,7 +17,6 @@ from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
|
||||
print(os.getcwd())
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
@@ -48,6 +47,14 @@ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
os.environ["ORACLE_USER"] = ""
|
||||
os.environ["ORACLE_PASSWORD"] = ""
|
||||
os.environ["ORACLE_DSN"] = ""
|
||||
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
|
||||
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
|
||||
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
|
||||
os.environ["ORACLE_WORKSPACE"] = "company"
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
@@ -89,20 +96,6 @@ async def init():
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
|
||||
oracle_db = OracleDB(
|
||||
config={
|
||||
"user": "",
|
||||
"password": "",
|
||||
"dsn": "",
|
||||
"config_dir": "path_to_config_dir",
|
||||
"wallet_location": "path_to_wallet_location",
|
||||
"wallet_password": "wallet_password",
|
||||
"workspace": "company",
|
||||
} # specify which docs you want to store and query
|
||||
)
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
@@ -121,11 +114,6 @@ async def init():
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
rag.key_string_value_json_storage_cls.db = oracle_db
|
||||
rag.vector_db_storage_cls.db = oracle_db
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
|
@@ -6,7 +6,6 @@ from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
|
||||
print(os.getcwd())
|
||||
script_directory = Path(__file__).resolve().parent.parent
|
||||
@@ -26,6 +25,14 @@ MAX_TOKENS = 4000
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
os.environ["ORACLE_USER"] = "username"
|
||||
os.environ["ORACLE_PASSWORD"] = "xxxxxxxxx"
|
||||
os.environ["ORACLE_DSN"] = "xxxxxxx_medium"
|
||||
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
|
||||
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
|
||||
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
|
||||
os.environ["ORACLE_WORKSPACE"] = "company"
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
@@ -63,26 +70,6 @@ async def main():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Create Oracle DB connection
|
||||
# The `config` parameter is the connection configuration of Oracle DB
|
||||
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
oracle_db = OracleDB(
|
||||
config={
|
||||
"user": "username",
|
||||
"password": "xxxxxxxxx",
|
||||
"dsn": "xxxxxxx_medium",
|
||||
"config_dir": "dir/path/to/oracle/config",
|
||||
"wallet_location": "dir/path/to/oracle/wallet",
|
||||
"wallet_password": "xxxxxxxxx",
|
||||
"workspace": "company", # specify which docs you want to store and query
|
||||
}
|
||||
)
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
@@ -112,26 +99,6 @@ async def main():
|
||||
},
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
|
||||
for storage in [
|
||||
rag.vector_db_storage_cls,
|
||||
rag.graph_storage_cls,
|
||||
rag.doc_status,
|
||||
rag.full_docs,
|
||||
rag.text_chunks,
|
||||
rag.llm_response_cache,
|
||||
rag.key_string_value_json_storage_cls,
|
||||
rag.chunks_vdb,
|
||||
rag.relationships_vdb,
|
||||
rag.entities_vdb,
|
||||
rag.graph_storage_cls,
|
||||
rag.chunk_entity_relation_graph,
|
||||
rag.llm_response_cache,
|
||||
]:
|
||||
# set client
|
||||
storage.db = oracle_db
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
||||
all_text = f.read()
|
||||
|
@@ -4,7 +4,6 @@ import os
|
||||
import numpy as np
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.kg.tidb_impl import TiDB
|
||||
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
@@ -17,11 +16,11 @@ APIKEY = ""
|
||||
CHATMODEL = ""
|
||||
EMBEDMODEL = ""
|
||||
|
||||
TIDB_HOST = ""
|
||||
TIDB_PORT = ""
|
||||
TIDB_USER = ""
|
||||
TIDB_PASSWORD = ""
|
||||
TIDB_DATABASE = "lightrag"
|
||||
os.environ["TIDB_HOST"] = ""
|
||||
os.environ["TIDB_PORT"] = ""
|
||||
os.environ["TIDB_USER"] = ""
|
||||
os.environ["TIDB_PASSWORD"] = ""
|
||||
os.environ["TIDB_DATABASE"] = "lightrag"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
@@ -62,21 +61,6 @@ async def main():
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
# Create TiDB DB connection
|
||||
tidb = TiDB(
|
||||
config={
|
||||
"host": TIDB_HOST,
|
||||
"port": TIDB_PORT,
|
||||
"user": TIDB_USER,
|
||||
"password": TIDB_PASSWORD,
|
||||
"database": TIDB_DATABASE,
|
||||
"workspace": "company", # specify which docs you want to store and query
|
||||
}
|
||||
)
|
||||
|
||||
# Check if TiDB DB tables exist, if not, tables will be created
|
||||
await tidb.check_tables()
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use TiDB DB as the KV/vector
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
@@ -95,15 +79,6 @@ async def main():
|
||||
graph_storage="TiDBGraphStorage",
|
||||
)
|
||||
|
||||
if rag.llm_response_cache:
|
||||
rag.llm_response_cache.db = tidb
|
||||
rag.full_docs.db = tidb
|
||||
rag.text_chunks.db = tidb
|
||||
rag.entities_vdb.db = tidb
|
||||
rag.relationships_vdb.db = tidb
|
||||
rag.chunks_vdb.db = tidb
|
||||
rag.chunk_entity_relation_graph.db = tidb
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -5,7 +5,6 @@ import time
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.kg.postgres_impl import PostgreSQLDB
|
||||
from lightrag.llm.zhipu import zhipu_complete
|
||||
from lightrag.llm.ollama import ollama_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
@@ -22,22 +21,14 @@ if not os.path.exists(WORKING_DIR):
|
||||
# AGE
|
||||
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||
|
||||
postgres_db = PostgreSQLDB(
|
||||
config={
|
||||
"host": "localhost",
|
||||
"port": 15432,
|
||||
"user": "rag",
|
||||
"password": "rag",
|
||||
"database": "rag",
|
||||
}
|
||||
)
|
||||
os.environ["POSTGRES_HOST"] = "localhost"
|
||||
os.environ["POSTGRES_PORT"] = "15432"
|
||||
os.environ["POSTGRES_USER"] = "rag"
|
||||
os.environ["POSTGRES_PASSWORD"] = "rag"
|
||||
os.environ["POSTGRES_DATABASE"] = "rag"
|
||||
|
||||
|
||||
async def main():
|
||||
await postgres_db.initdb()
|
||||
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
||||
await postgres_db.check_tables()
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=zhipu_complete,
|
||||
@@ -57,17 +48,7 @@ async def main():
|
||||
graph_storage="PGGraphStorage",
|
||||
vector_storage="PGVectorStorage",
|
||||
)
|
||||
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.doc_status.db = postgres_db
|
||||
rag.full_docs.db = postgres_db
|
||||
rag.text_chunks.db = postgres_db
|
||||
rag.llm_response_cache.db = postgres_db
|
||||
rag.key_string_value_json_storage_cls.db = postgres_db
|
||||
rag.chunks_vdb.db = postgres_db
|
||||
rag.relationships_vdb.db = postgres_db
|
||||
rag.entities_vdb.db = postgres_db
|
||||
rag.graph_storage_cls.db = postgres_db
|
||||
rag.chunk_entity_relation_graph.db = postgres_db
|
||||
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
|
||||
|
@@ -15,11 +15,6 @@ import logging
|
||||
import argparse
|
||||
from typing import List, Any, Literal, Optional, Dict
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.base import DocProcessingStatus, DocStatus
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from lightrag.api import __api_version__
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import aiofiles
|
||||
@@ -36,39 +31,13 @@ import configparser
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.base import DocProcessingStatus, DocStatus
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from lightrag.api import __api_version__
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.utils import logger
|
||||
from .ollama_api import (
|
||||
OllamaAPI,
|
||||
)
|
||||
from .ollama_api import ollama_server_infos
|
||||
|
||||
|
||||
def get_db_type_from_storage_class(class_name: str) -> str | None:
|
||||
"""Determine database type based on storage class name"""
|
||||
if class_name.startswith("PG"):
|
||||
return "postgres"
|
||||
elif class_name.startswith("Oracle"):
|
||||
return "oracle"
|
||||
elif class_name.startswith("TiDB"):
|
||||
return "tidb"
|
||||
return None
|
||||
|
||||
|
||||
def import_db_module(db_type: str):
|
||||
"""Dynamically import database module"""
|
||||
if db_type == "postgres":
|
||||
from ..kg.postgres_impl import PostgreSQLDB
|
||||
|
||||
return PostgreSQLDB
|
||||
elif db_type == "oracle":
|
||||
from ..kg.oracle_impl import OracleDB
|
||||
|
||||
return OracleDB
|
||||
elif db_type == "tidb":
|
||||
from ..kg.tidb_impl import TiDB
|
||||
|
||||
return TiDB
|
||||
return None
|
||||
from .ollama_api import OllamaAPI, ollama_server_infos
|
||||
|
||||
|
||||
# Load environment variables
|
||||
@@ -929,52 +898,12 @@ def create_app(args):
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
"""Lifespan context manager for startup and shutdown events"""
|
||||
# Initialize database connections
|
||||
db_instances = {}
|
||||
# Store background tasks
|
||||
app.state.background_tasks = set()
|
||||
|
||||
try:
|
||||
# Check which database types are used
|
||||
db_types = set()
|
||||
for storage_name, storage_instance in storage_instances:
|
||||
db_type = get_db_type_from_storage_class(
|
||||
storage_instance.__class__.__name__
|
||||
)
|
||||
if db_type:
|
||||
db_types.add(db_type)
|
||||
|
||||
# Import and initialize databases as needed
|
||||
for db_type in db_types:
|
||||
if db_type == "postgres":
|
||||
DB = import_db_module("postgres")
|
||||
db = DB(_get_postgres_config())
|
||||
await db.initdb()
|
||||
await db.check_tables()
|
||||
db_instances["postgres"] = db
|
||||
elif db_type == "oracle":
|
||||
DB = import_db_module("oracle")
|
||||
db = DB(_get_oracle_config())
|
||||
await db.check_tables()
|
||||
db_instances["oracle"] = db
|
||||
elif db_type == "tidb":
|
||||
DB = import_db_module("tidb")
|
||||
db = DB(_get_tidb_config())
|
||||
await db.check_tables()
|
||||
db_instances["tidb"] = db
|
||||
|
||||
# Inject database instances into storage classes
|
||||
for storage_name, storage_instance in storage_instances:
|
||||
db_type = get_db_type_from_storage_class(
|
||||
storage_instance.__class__.__name__
|
||||
)
|
||||
if db_type:
|
||||
if db_type not in db_instances:
|
||||
error_msg = f"Database type '{db_type}' is required by {storage_name} but not initialized"
|
||||
logger.error(error_msg)
|
||||
raise RuntimeError(error_msg)
|
||||
storage_instance.db = db_instances[db_type]
|
||||
logger.info(f"Injected {db_type} db to {storage_name}")
|
||||
# Initialize database connections
|
||||
await rag.initialize_storages()
|
||||
|
||||
# Auto scan documents if enabled
|
||||
if args.auto_scan_at_startup:
|
||||
@@ -1000,17 +929,7 @@ def create_app(args):
|
||||
|
||||
finally:
|
||||
# Clean up database connections
|
||||
for db_type, db in db_instances.items():
|
||||
if hasattr(db, "pool"):
|
||||
await db.pool.close()
|
||||
# Use more accurate database name display
|
||||
db_names = {
|
||||
"postgres": "PostgreSQL",
|
||||
"oracle": "Oracle",
|
||||
"tidb": "TiDB",
|
||||
}
|
||||
db_name = db_names.get(db_type, db_type)
|
||||
logger.info(f"Closed {db_name} database connection pool")
|
||||
await rag.finalize_storages()
|
||||
|
||||
# Initialize FastAPI
|
||||
app = FastAPI(
|
||||
@@ -1042,92 +961,6 @@ def create_app(args):
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
# Database configuration functions
|
||||
def _get_postgres_config():
|
||||
return {
|
||||
"host": os.environ.get(
|
||||
"POSTGRES_HOST",
|
||||
config.get("postgres", "host", fallback="localhost"),
|
||||
),
|
||||
"port": os.environ.get(
|
||||
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
|
||||
),
|
||||
"user": os.environ.get(
|
||||
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
|
||||
),
|
||||
"password": os.environ.get(
|
||||
"POSTGRES_PASSWORD",
|
||||
config.get("postgres", "password", fallback=None),
|
||||
),
|
||||
"database": os.environ.get(
|
||||
"POSTGRES_DATABASE",
|
||||
config.get("postgres", "database", fallback=None),
|
||||
),
|
||||
"workspace": os.environ.get(
|
||||
"POSTGRES_WORKSPACE",
|
||||
config.get("postgres", "workspace", fallback="default"),
|
||||
),
|
||||
}
|
||||
|
||||
def _get_oracle_config():
|
||||
return {
|
||||
"user": os.environ.get(
|
||||
"ORACLE_USER",
|
||||
config.get("oracle", "user", fallback=None),
|
||||
),
|
||||
"password": os.environ.get(
|
||||
"ORACLE_PASSWORD",
|
||||
config.get("oracle", "password", fallback=None),
|
||||
),
|
||||
"dsn": os.environ.get(
|
||||
"ORACLE_DSN",
|
||||
config.get("oracle", "dsn", fallback=None),
|
||||
),
|
||||
"config_dir": os.environ.get(
|
||||
"ORACLE_CONFIG_DIR",
|
||||
config.get("oracle", "config_dir", fallback=None),
|
||||
),
|
||||
"wallet_location": os.environ.get(
|
||||
"ORACLE_WALLET_LOCATION",
|
||||
config.get("oracle", "wallet_location", fallback=None),
|
||||
),
|
||||
"wallet_password": os.environ.get(
|
||||
"ORACLE_WALLET_PASSWORD",
|
||||
config.get("oracle", "wallet_password", fallback=None),
|
||||
),
|
||||
"workspace": os.environ.get(
|
||||
"ORACLE_WORKSPACE",
|
||||
config.get("oracle", "workspace", fallback="default"),
|
||||
),
|
||||
}
|
||||
|
||||
def _get_tidb_config():
|
||||
return {
|
||||
"host": os.environ.get(
|
||||
"TIDB_HOST",
|
||||
config.get("tidb", "host", fallback="localhost"),
|
||||
),
|
||||
"port": os.environ.get(
|
||||
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
|
||||
),
|
||||
"user": os.environ.get(
|
||||
"TIDB_USER",
|
||||
config.get("tidb", "user", fallback=None),
|
||||
),
|
||||
"password": os.environ.get(
|
||||
"TIDB_PASSWORD",
|
||||
config.get("tidb", "password", fallback=None),
|
||||
),
|
||||
"database": os.environ.get(
|
||||
"TIDB_DATABASE",
|
||||
config.get("tidb", "database", fallback=None),
|
||||
),
|
||||
"workspace": os.environ.get(
|
||||
"TIDB_WORKSPACE",
|
||||
config.get("tidb", "workspace", fallback="default"),
|
||||
),
|
||||
}
|
||||
|
||||
# Create the optional API key dependency
|
||||
optional_api_key = get_api_key_dependency(api_key)
|
||||
|
||||
@@ -1262,6 +1095,7 @@ def create_app(args):
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
else:
|
||||
rag = LightRAG(
|
||||
@@ -1293,20 +1127,9 @@ def create_app(args):
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
|
||||
# Collect all storage instances
|
||||
storage_instances = [
|
||||
("full_docs", rag.full_docs),
|
||||
("text_chunks", rag.text_chunks),
|
||||
("chunk_entity_relation_graph", rag.chunk_entity_relation_graph),
|
||||
("entities_vdb", rag.entities_vdb),
|
||||
("relationships_vdb", rag.relationships_vdb),
|
||||
("chunks_vdb", rag.chunks_vdb),
|
||||
("doc_status", rag.doc_status),
|
||||
("llm_response_cache", rag.llm_response_cache),
|
||||
]
|
||||
|
||||
async def pipeline_enqueue_file(file_path: Path) -> bool:
|
||||
"""Add a file to the queue for processing
|
||||
|
||||
|
@@ -87,6 +87,14 @@ class StorageNameSpace(ABC):
|
||||
namespace: str
|
||||
global_config: dict[str, Any]
|
||||
|
||||
async def initialize(self):
|
||||
"""Initialize the storage"""
|
||||
pass
|
||||
|
||||
async def finalize(self):
|
||||
"""Finalize the storage"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def index_done_callback(self) -> None:
|
||||
"""Commit the storage operations after indexing"""
|
||||
@@ -247,3 +255,12 @@ class DocStatusStorage(BaseKVStorage, ABC):
|
||||
self, status: DocStatus
|
||||
) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all documents with a specific status"""
|
||||
|
||||
|
||||
class StoragesStatus(str, Enum):
|
||||
"""Storages status"""
|
||||
|
||||
NOT_CREATED = "not_created"
|
||||
CREATED = "created"
|
||||
INITIALIZED = "initialized"
|
||||
FINALIZED = "finalized"
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
import numpy as np
|
||||
import configparser
|
||||
import asyncio
|
||||
@@ -26,8 +26,11 @@ if not pm.is_installed("motor"):
|
||||
pm.install("motor")
|
||||
|
||||
try:
|
||||
from motor.motor_asyncio import AsyncIOMotorClient
|
||||
from pymongo import MongoClient
|
||||
from motor.motor_asyncio import (
|
||||
AsyncIOMotorClient,
|
||||
AsyncIOMotorDatabase,
|
||||
AsyncIOMotorCollection,
|
||||
)
|
||||
from pymongo.operations import SearchIndexModel
|
||||
from pymongo.errors import PyMongoError
|
||||
except ImportError as e:
|
||||
@@ -39,31 +42,63 @@ config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
|
||||
class ClientManager:
|
||||
_instances = {"db": None, "ref_count": 0}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
@classmethod
|
||||
async def get_client(cls) -> AsyncIOMotorDatabase:
|
||||
async with cls._lock:
|
||||
if cls._instances["db"] is None:
|
||||
uri = os.environ.get(
|
||||
"MONGO_URI",
|
||||
config.get(
|
||||
"mongodb",
|
||||
"uri",
|
||||
fallback="mongodb://root:root@localhost:27017/",
|
||||
),
|
||||
)
|
||||
database_name = os.environ.get(
|
||||
"MONGO_DATABASE",
|
||||
config.get("mongodb", "database", fallback="LightRAG"),
|
||||
)
|
||||
client = AsyncIOMotorClient(uri)
|
||||
db = client.get_database(database_name)
|
||||
cls._instances["db"] = db
|
||||
cls._instances["ref_count"] = 0
|
||||
cls._instances["ref_count"] += 1
|
||||
return cls._instances["db"]
|
||||
|
||||
@classmethod
|
||||
async def release_client(cls, db: AsyncIOMotorDatabase):
|
||||
async with cls._lock:
|
||||
if db is not None:
|
||||
if db is cls._instances["db"]:
|
||||
cls._instances["ref_count"] -= 1
|
||||
if cls._instances["ref_count"] == 0:
|
||||
cls._instances["db"] = None
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class MongoKVStorage(BaseKVStorage):
|
||||
def __post_init__(self):
|
||||
uri = os.environ.get(
|
||||
"MONGO_URI",
|
||||
config.get(
|
||||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||||
),
|
||||
)
|
||||
client = AsyncIOMotorClient(uri)
|
||||
database = client.get_database(
|
||||
os.environ.get(
|
||||
"MONGO_DATABASE",
|
||||
config.get("mongodb", "database", fallback="LightRAG"),
|
||||
)
|
||||
)
|
||||
db: AsyncIOMotorDatabase = field(default=None)
|
||||
_data: AsyncIOMotorCollection = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._collection_name = self.namespace
|
||||
|
||||
self._data = database.get_collection(self._collection_name)
|
||||
logger.debug(f"Use MongoDB as KV {self._collection_name}")
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
self._data = await get_or_create_collection(self.db, self._collection_name)
|
||||
logger.debug(f"Use MongoDB as KV {self._collection_name}")
|
||||
|
||||
# Ensure collection exists
|
||||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
self._data = None
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
return await self._data.find_one({"_id": id})
|
||||
@@ -120,28 +155,23 @@ class MongoKVStorage(BaseKVStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class MongoDocStatusStorage(DocStatusStorage):
|
||||
db: AsyncIOMotorDatabase = field(default=None)
|
||||
_data: AsyncIOMotorCollection = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
uri = os.environ.get(
|
||||
"MONGO_URI",
|
||||
config.get(
|
||||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||||
),
|
||||
)
|
||||
client = AsyncIOMotorClient(uri)
|
||||
database = client.get_database(
|
||||
os.environ.get(
|
||||
"MONGO_DATABASE",
|
||||
config.get("mongodb", "database", fallback="LightRAG"),
|
||||
)
|
||||
)
|
||||
|
||||
self._collection_name = self.namespace
|
||||
self._data = database.get_collection(self._collection_name)
|
||||
|
||||
logger.debug(f"Use MongoDB as doc status {self._collection_name}")
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
self._data = await get_or_create_collection(self.db, self._collection_name)
|
||||
logger.debug(f"Use MongoDB as DocStatus {self._collection_name}")
|
||||
|
||||
# Ensure collection exists
|
||||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
self._data = None
|
||||
|
||||
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
||||
return await self._data.find_one({"_id": id})
|
||||
@@ -202,36 +232,33 @@ class MongoDocStatusStorage(DocStatusStorage):
|
||||
@dataclass
|
||||
class MongoGraphStorage(BaseGraphStorage):
|
||||
"""
|
||||
A concrete implementation using MongoDB’s $graphLookup to demonstrate multi-hop queries.
|
||||
A concrete implementation using MongoDB's $graphLookup to demonstrate multi-hop queries.
|
||||
"""
|
||||
|
||||
db: AsyncIOMotorDatabase = field(default=None)
|
||||
collection: AsyncIOMotorCollection = field(default=None)
|
||||
|
||||
def __init__(self, namespace, global_config, embedding_func):
|
||||
super().__init__(
|
||||
namespace=namespace,
|
||||
global_config=global_config,
|
||||
embedding_func=embedding_func,
|
||||
)
|
||||
uri = os.environ.get(
|
||||
"MONGO_URI",
|
||||
config.get(
|
||||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||||
),
|
||||
)
|
||||
client = AsyncIOMotorClient(uri)
|
||||
database = client.get_database(
|
||||
os.environ.get(
|
||||
"MONGO_DATABASE",
|
||||
config.get("mongodb", "database", fallback="LightRAG"),
|
||||
)
|
||||
)
|
||||
|
||||
self._collection_name = self.namespace
|
||||
self.collection = database.get_collection(self._collection_name)
|
||||
|
||||
logger.debug(f"Use MongoDB as KG {self._collection_name}")
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
self.collection = await get_or_create_collection(
|
||||
self.db, self._collection_name
|
||||
)
|
||||
logger.debug(f"Use MongoDB as KG {self._collection_name}")
|
||||
|
||||
# Ensure collection exists
|
||||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
self.collection = None
|
||||
|
||||
#
|
||||
# -------------------------------------------------------------------------
|
||||
@@ -770,6 +797,9 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class MongoVectorDBStorage(BaseVectorStorage):
|
||||
db: AsyncIOMotorDatabase = field(default=None)
|
||||
_data: AsyncIOMotorCollection = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||||
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
||||
@@ -778,41 +808,36 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
||||
)
|
||||
self.cosine_better_than_threshold = cosine_threshold
|
||||
|
||||
uri = os.environ.get(
|
||||
"MONGO_URI",
|
||||
config.get(
|
||||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||||
),
|
||||
)
|
||||
client = AsyncIOMotorClient(uri)
|
||||
database = client.get_database(
|
||||
os.environ.get(
|
||||
"MONGO_DATABASE",
|
||||
config.get("mongodb", "database", fallback="LightRAG"),
|
||||
)
|
||||
)
|
||||
|
||||
self._collection_name = self.namespace
|
||||
self._data = database.get_collection(self._collection_name)
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
|
||||
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
self._data = await get_or_create_collection(self.db, self._collection_name)
|
||||
|
||||
# Ensure collection exists
|
||||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||||
# Ensure vector index exists
|
||||
await self.create_vector_index_if_not_exists()
|
||||
|
||||
# Ensure vector index exists
|
||||
self.create_vector_index(uri, database.name, self._collection_name)
|
||||
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
|
||||
|
||||
def create_vector_index(self, uri: str, database_name: str, collection_name: str):
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
self._data = None
|
||||
|
||||
async def create_vector_index_if_not_exists(self):
|
||||
"""Creates an Atlas Vector Search index."""
|
||||
client = MongoClient(uri)
|
||||
collection = client.get_database(database_name).get_collection(
|
||||
self._collection_name
|
||||
)
|
||||
|
||||
try:
|
||||
index_name = "vector_knn_index"
|
||||
|
||||
indexes = await self._data.list_search_indexes().to_list(length=None)
|
||||
for index in indexes:
|
||||
if index["name"] == index_name:
|
||||
logger.debug("vector index already exist")
|
||||
return
|
||||
|
||||
search_index_model = SearchIndexModel(
|
||||
definition={
|
||||
"fields": [
|
||||
@@ -824,11 +849,11 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
}
|
||||
]
|
||||
},
|
||||
name="vector_knn_index",
|
||||
name=index_name,
|
||||
type="vectorSearch",
|
||||
)
|
||||
|
||||
collection.create_search_index(search_index_model)
|
||||
await self._data.create_search_index(search_index_model)
|
||||
logger.info("Vector index created successfully.")
|
||||
|
||||
except PyMongoError as _:
|
||||
@@ -913,15 +938,13 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def create_collection_if_not_exists(uri: str, database_name: str, collection_name: str):
|
||||
"""Check if the collection exists. if not, create it."""
|
||||
client = MongoClient(uri)
|
||||
database = client.get_database(database_name)
|
||||
|
||||
collection_names = database.list_collection_names()
|
||||
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
|
||||
collection_names = await db.list_collection_names()
|
||||
|
||||
if collection_name not in collection_names:
|
||||
database.create_collection(collection_name)
|
||||
collection = await db.create_collection(collection_name)
|
||||
logger.info(f"Created collection: {collection_name}")
|
||||
return collection
|
||||
else:
|
||||
logger.debug(f"Collection '{collection_name}' already exists.")
|
||||
return db.get_collection(collection_name)
|
||||
|
@@ -2,11 +2,11 @@ import array
|
||||
import asyncio
|
||||
|
||||
# import html
|
||||
# import os
|
||||
from dataclasses import dataclass
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Union, final
|
||||
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
@@ -177,17 +177,91 @@ class OracleDB:
|
||||
raise
|
||||
|
||||
|
||||
class ClientManager:
|
||||
_instances = {"db": None, "ref_count": 0}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
@staticmethod
|
||||
def get_config():
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
return {
|
||||
"user": os.environ.get(
|
||||
"ORACLE_USER",
|
||||
config.get("oracle", "user", fallback=None),
|
||||
),
|
||||
"password": os.environ.get(
|
||||
"ORACLE_PASSWORD",
|
||||
config.get("oracle", "password", fallback=None),
|
||||
),
|
||||
"dsn": os.environ.get(
|
||||
"ORACLE_DSN",
|
||||
config.get("oracle", "dsn", fallback=None),
|
||||
),
|
||||
"config_dir": os.environ.get(
|
||||
"ORACLE_CONFIG_DIR",
|
||||
config.get("oracle", "config_dir", fallback=None),
|
||||
),
|
||||
"wallet_location": os.environ.get(
|
||||
"ORACLE_WALLET_LOCATION",
|
||||
config.get("oracle", "wallet_location", fallback=None),
|
||||
),
|
||||
"wallet_password": os.environ.get(
|
||||
"ORACLE_WALLET_PASSWORD",
|
||||
config.get("oracle", "wallet_password", fallback=None),
|
||||
),
|
||||
"workspace": os.environ.get(
|
||||
"ORACLE_WORKSPACE",
|
||||
config.get("oracle", "workspace", fallback="default"),
|
||||
),
|
||||
}
|
||||
|
||||
@classmethod
|
||||
async def get_client(cls) -> OracleDB:
|
||||
async with cls._lock:
|
||||
if cls._instances["db"] is None:
|
||||
config = ClientManager.get_config()
|
||||
db = OracleDB(config)
|
||||
await db.check_tables()
|
||||
cls._instances["db"] = db
|
||||
cls._instances["ref_count"] = 0
|
||||
cls._instances["ref_count"] += 1
|
||||
return cls._instances["db"]
|
||||
|
||||
@classmethod
|
||||
async def release_client(cls, db: OracleDB):
|
||||
async with cls._lock:
|
||||
if db is not None:
|
||||
if db is cls._instances["db"]:
|
||||
cls._instances["ref_count"] -= 1
|
||||
if cls._instances["ref_count"] == 0:
|
||||
await db.pool.close()
|
||||
logger.info("Closed OracleDB database connection pool")
|
||||
cls._instances["db"] = None
|
||||
else:
|
||||
await db.pool.close()
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class OracleKVStorage(BaseKVStorage):
|
||||
# db instance must be injected before use
|
||||
# db: OracleDB
|
||||
db: OracleDB = field(default=None)
|
||||
meta_fields = None
|
||||
|
||||
def __post_init__(self):
|
||||
self._data = {}
|
||||
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
################ QUERY METHODS ################
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
@@ -324,6 +398,8 @@ class OracleKVStorage(BaseKVStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class OracleVectorDBStorage(BaseVectorStorage):
|
||||
db: OracleDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||||
cosine_threshold = config.get("cosine_better_than_threshold")
|
||||
@@ -333,6 +409,15 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
||||
)
|
||||
self.cosine_better_than_threshold = cosine_threshold
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
#################### query method ###############
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
embeddings = await self.embedding_func([query])
|
||||
@@ -369,9 +454,20 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class OracleGraphStorage(BaseGraphStorage):
|
||||
db: OracleDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
#################### insert method ################
|
||||
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||||
|
@@ -3,10 +3,10 @@ import inspect
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Union, final
|
||||
|
||||
import numpy as np
|
||||
import configparser
|
||||
|
||||
from lightrag.types import KnowledgeGraph
|
||||
|
||||
@@ -181,15 +181,84 @@ class PostgreSQLDB:
|
||||
pass
|
||||
|
||||
|
||||
class ClientManager:
|
||||
_instances = {"db": None, "ref_count": 0}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
@staticmethod
|
||||
def get_config():
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
return {
|
||||
"host": os.environ.get(
|
||||
"POSTGRES_HOST",
|
||||
config.get("postgres", "host", fallback="localhost"),
|
||||
),
|
||||
"port": os.environ.get(
|
||||
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
|
||||
),
|
||||
"user": os.environ.get(
|
||||
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
|
||||
),
|
||||
"password": os.environ.get(
|
||||
"POSTGRES_PASSWORD",
|
||||
config.get("postgres", "password", fallback=None),
|
||||
),
|
||||
"database": os.environ.get(
|
||||
"POSTGRES_DATABASE",
|
||||
config.get("postgres", "database", fallback=None),
|
||||
),
|
||||
"workspace": os.environ.get(
|
||||
"POSTGRES_WORKSPACE",
|
||||
config.get("postgres", "workspace", fallback="default"),
|
||||
),
|
||||
}
|
||||
|
||||
@classmethod
|
||||
async def get_client(cls) -> PostgreSQLDB:
|
||||
async with cls._lock:
|
||||
if cls._instances["db"] is None:
|
||||
config = ClientManager.get_config()
|
||||
db = PostgreSQLDB(config)
|
||||
await db.initdb()
|
||||
await db.check_tables()
|
||||
cls._instances["db"] = db
|
||||
cls._instances["ref_count"] = 0
|
||||
cls._instances["ref_count"] += 1
|
||||
return cls._instances["db"]
|
||||
|
||||
@classmethod
|
||||
async def release_client(cls, db: PostgreSQLDB):
|
||||
async with cls._lock:
|
||||
if db is not None:
|
||||
if db is cls._instances["db"]:
|
||||
cls._instances["ref_count"] -= 1
|
||||
if cls._instances["ref_count"] == 0:
|
||||
await db.pool.close()
|
||||
logger.info("Closed PostgreSQL database connection pool")
|
||||
cls._instances["db"] = None
|
||||
else:
|
||||
await db.pool.close()
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class PGKVStorage(BaseKVStorage):
|
||||
# db instance must be injected before use
|
||||
# db: PostgreSQLDB
|
||||
db: PostgreSQLDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
################ QUERY METHODS ################
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
@@ -308,6 +377,8 @@ class PGKVStorage(BaseKVStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class PGVectorStorage(BaseVectorStorage):
|
||||
db: PostgreSQLDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||||
@@ -318,6 +389,15 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
)
|
||||
self.cosine_better_than_threshold = cosine_threshold
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
def _upsert_chunks(self, item: dict):
|
||||
try:
|
||||
upsert_sql = SQL_TEMPLATES["upsert_chunk"]
|
||||
@@ -426,6 +506,17 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class PGDocStatusStorage(DocStatusStorage):
|
||||
db: PostgreSQLDB = field(default=None)
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
async def filter_keys(self, keys: set[str]) -> set[str]:
|
||||
"""Filter out duplicated content"""
|
||||
sql = SQL_TEMPLATES["filter_keys"].format(
|
||||
@@ -565,6 +656,8 @@ class PGGraphQueryException(Exception):
|
||||
@final
|
||||
@dataclass
|
||||
class PGGraphStorage(BaseGraphStorage):
|
||||
db: PostgreSQLDB = field(default=None)
|
||||
|
||||
@staticmethod
|
||||
def load_nx_graph(file_name):
|
||||
print("no preloading of graph with AGE in production")
|
||||
@@ -575,6 +668,15 @@ class PGGraphStorage(BaseGraphStorage):
|
||||
"node2vec": self._node2vec_embed,
|
||||
}
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
async def index_done_callback(self) -> None:
|
||||
# PG handles persistence automatically
|
||||
pass
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import asyncio
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Union, final
|
||||
|
||||
import numpy as np
|
||||
@@ -13,6 +13,7 @@ from ..namespace import NameSpace, is_namespace
|
||||
from ..utils import logger
|
||||
|
||||
import pipmaster as pm
|
||||
import configparser
|
||||
|
||||
if not pm.is_installed("pymysql"):
|
||||
pm.install("pymysql")
|
||||
@@ -104,16 +105,81 @@ class TiDB:
|
||||
raise
|
||||
|
||||
|
||||
class ClientManager:
|
||||
_instances = {"db": None, "ref_count": 0}
|
||||
_lock = asyncio.Lock()
|
||||
|
||||
@staticmethod
|
||||
def get_config():
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
return {
|
||||
"host": os.environ.get(
|
||||
"TIDB_HOST",
|
||||
config.get("tidb", "host", fallback="localhost"),
|
||||
),
|
||||
"port": os.environ.get(
|
||||
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
|
||||
),
|
||||
"user": os.environ.get(
|
||||
"TIDB_USER",
|
||||
config.get("tidb", "user", fallback=None),
|
||||
),
|
||||
"password": os.environ.get(
|
||||
"TIDB_PASSWORD",
|
||||
config.get("tidb", "password", fallback=None),
|
||||
),
|
||||
"database": os.environ.get(
|
||||
"TIDB_DATABASE",
|
||||
config.get("tidb", "database", fallback=None),
|
||||
),
|
||||
"workspace": os.environ.get(
|
||||
"TIDB_WORKSPACE",
|
||||
config.get("tidb", "workspace", fallback="default"),
|
||||
),
|
||||
}
|
||||
|
||||
@classmethod
|
||||
async def get_client(cls) -> TiDB:
|
||||
async with cls._lock:
|
||||
if cls._instances["db"] is None:
|
||||
config = ClientManager.get_config()
|
||||
db = TiDB(config)
|
||||
await db.check_tables()
|
||||
cls._instances["db"] = db
|
||||
cls._instances["ref_count"] = 0
|
||||
cls._instances["ref_count"] += 1
|
||||
return cls._instances["db"]
|
||||
|
||||
@classmethod
|
||||
async def release_client(cls, db: TiDB):
|
||||
async with cls._lock:
|
||||
if db is not None:
|
||||
if db is cls._instances["db"]:
|
||||
cls._instances["ref_count"] -= 1
|
||||
if cls._instances["ref_count"] == 0:
|
||||
cls._instances["db"] = None
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class TiDBKVStorage(BaseKVStorage):
|
||||
# db instance must be injected before use
|
||||
# db: TiDB
|
||||
db: TiDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._data = {}
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
################ QUERY METHODS ################
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
@@ -184,7 +250,7 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
"tokens": item["tokens"],
|
||||
"chunk_order_index": item["chunk_order_index"],
|
||||
"full_doc_id": item["full_doc_id"],
|
||||
"content_vector": f'{item["__vector__"].tolist()}',
|
||||
"content_vector": f"{item['__vector__'].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
)
|
||||
@@ -212,6 +278,8 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
db: TiDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._client_file_name = os.path.join(
|
||||
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
||||
@@ -225,6 +293,15 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
)
|
||||
self.cosine_better_than_threshold = cosine_threshold
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
"""Search from tidb vector"""
|
||||
embeddings = await self.embedding_func([query])
|
||||
@@ -282,7 +359,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
"id": item["id"],
|
||||
"name": item["entity_name"],
|
||||
"content": item["content"],
|
||||
"content_vector": f'{item["content_vector"].tolist()}',
|
||||
"content_vector": f"{item['content_vector'].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
# update entity_id if node inserted by graph_storage_instance before
|
||||
@@ -304,7 +381,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
"source_name": item["src_id"],
|
||||
"target_name": item["tgt_id"],
|
||||
"content": item["content"],
|
||||
"content_vector": f'{item["content_vector"].tolist()}',
|
||||
"content_vector": f"{item['content_vector'].tolist()}",
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
# update relation_id if node inserted by graph_storage_instance before
|
||||
@@ -337,12 +414,20 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
@final
|
||||
@dataclass
|
||||
class TiDBGraphStorage(BaseGraphStorage):
|
||||
# db instance must be injected before use
|
||||
# db: TiDB
|
||||
db: TiDB = field(default=None)
|
||||
|
||||
def __post_init__(self):
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
|
||||
async def initialize(self):
|
||||
if self.db is None:
|
||||
self.db = await ClientManager.get_client()
|
||||
|
||||
async def finalize(self):
|
||||
if self.db is not None:
|
||||
await ClientManager.release_client(self.db)
|
||||
self.db = None
|
||||
|
||||
#################### upsert method ################
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||||
entity_name = node_id
|
||||
|
@@ -17,6 +17,7 @@ from .base import (
|
||||
DocStatusStorage,
|
||||
QueryParam,
|
||||
StorageNameSpace,
|
||||
StoragesStatus,
|
||||
)
|
||||
from .namespace import NameSpace, make_namespace
|
||||
from .operate import (
|
||||
@@ -348,6 +349,10 @@ class LightRAG:
|
||||
# Extensions
|
||||
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
# Storages Management
|
||||
auto_manage_storages_states: bool = True
|
||||
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
|
||||
|
||||
"""Dictionary for additional parameters and extensions."""
|
||||
convert_response_to_json_func: Callable[[str], dict[str, Any]] = (
|
||||
convert_response_to_json
|
||||
@@ -440,7 +445,10 @@ class LightRAG:
|
||||
**self.vector_db_storage_cls_kwargs,
|
||||
}
|
||||
|
||||
# show config
|
||||
# Life cycle
|
||||
self.storages_status = StoragesStatus.NOT_CREATED
|
||||
|
||||
# Show config
|
||||
global_config = asdict(self)
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
@@ -547,6 +555,65 @@ class LightRAG:
|
||||
)
|
||||
)
|
||||
|
||||
self.storages_status = StoragesStatus.CREATED
|
||||
|
||||
# Initialize storages
|
||||
if self.auto_manage_storages_states:
|
||||
loop = always_get_an_event_loop()
|
||||
loop.run_until_complete(self.initialize_storages())
|
||||
|
||||
def __del__(self):
|
||||
# Finalize storages
|
||||
if self.auto_manage_storages_states:
|
||||
loop = always_get_an_event_loop()
|
||||
loop.run_until_complete(self.finalize_storages())
|
||||
|
||||
async def initialize_storages(self):
|
||||
"""Asynchronously initialize the storages"""
|
||||
if self.storages_status == StoragesStatus.CREATED:
|
||||
tasks = []
|
||||
|
||||
for storage in (
|
||||
self.full_docs,
|
||||
self.text_chunks,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
self.chunks_vdb,
|
||||
self.chunk_entity_relation_graph,
|
||||
self.llm_response_cache,
|
||||
self.doc_status,
|
||||
):
|
||||
if storage:
|
||||
tasks.append(storage.initialize())
|
||||
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
self.storages_status = StoragesStatus.INITIALIZED
|
||||
logger.debug("Initialized Storages")
|
||||
|
||||
async def finalize_storages(self):
|
||||
"""Asynchronously finalize the storages"""
|
||||
if self.storages_status == StoragesStatus.INITIALIZED:
|
||||
tasks = []
|
||||
|
||||
for storage in (
|
||||
self.full_docs,
|
||||
self.text_chunks,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
self.chunks_vdb,
|
||||
self.chunk_entity_relation_graph,
|
||||
self.llm_response_cache,
|
||||
self.doc_status,
|
||||
):
|
||||
if storage:
|
||||
tasks.append(storage.finalize())
|
||||
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
self.storages_status = StoragesStatus.FINALIZED
|
||||
logger.debug("Finalized Storages")
|
||||
|
||||
async def get_graph_labels(self):
|
||||
text = await self.chunk_entity_relation_graph.get_all_labels()
|
||||
return text
|
||||
|
Reference in New Issue
Block a user