Merge pull request #846 from ArnoChenFx/db-connection-and-storage-lifecycle

Refactor Database Connection Management and Improve Storage Lifecycle Handling
This commit is contained in:
Yannick Stephan
2025-02-18 22:39:31 +01:00
committed by GitHub
11 changed files with 540 additions and 416 deletions

View File

@@ -1,6 +1,6 @@
import asyncio
import os
from dataclasses import dataclass
from dataclasses import dataclass, field
from typing import Any, Union, final
import numpy as np
@@ -13,6 +13,7 @@ from ..namespace import NameSpace, is_namespace
from ..utils import logger
import pipmaster as pm
import configparser
if not pm.is_installed("pymysql"):
pm.install("pymysql")
@@ -104,16 +105,81 @@ class TiDB:
raise
class ClientManager:
_instances = {"db": None, "ref_count": 0}
_lock = asyncio.Lock()
@staticmethod
def get_config():
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
return {
"host": os.environ.get(
"TIDB_HOST",
config.get("tidb", "host", fallback="localhost"),
),
"port": os.environ.get(
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
),
"user": os.environ.get(
"TIDB_USER",
config.get("tidb", "user", fallback=None),
),
"password": os.environ.get(
"TIDB_PASSWORD",
config.get("tidb", "password", fallback=None),
),
"database": os.environ.get(
"TIDB_DATABASE",
config.get("tidb", "database", fallback=None),
),
"workspace": os.environ.get(
"TIDB_WORKSPACE",
config.get("tidb", "workspace", fallback="default"),
),
}
@classmethod
async def get_client(cls) -> TiDB:
async with cls._lock:
if cls._instances["db"] is None:
config = ClientManager.get_config()
db = TiDB(config)
await db.check_tables()
cls._instances["db"] = db
cls._instances["ref_count"] = 0
cls._instances["ref_count"] += 1
return cls._instances["db"]
@classmethod
async def release_client(cls, db: TiDB):
async with cls._lock:
if db is not None:
if db is cls._instances["db"]:
cls._instances["ref_count"] -= 1
if cls._instances["ref_count"] == 0:
cls._instances["db"] = None
@final
@dataclass
class TiDBKVStorage(BaseKVStorage):
# db instance must be injected before use
# db: TiDB
db: TiDB = field(default=None)
def __post_init__(self):
self._data = {}
self._max_batch_size = self.global_config["embedding_batch_num"]
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> dict[str, Any] | None:
@@ -184,7 +250,7 @@ class TiDBKVStorage(BaseKVStorage):
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": f'{item["__vector__"].tolist()}',
"content_vector": f"{item['__vector__'].tolist()}",
"workspace": self.db.workspace,
}
)
@@ -212,6 +278,8 @@ class TiDBKVStorage(BaseKVStorage):
@final
@dataclass
class TiDBVectorDBStorage(BaseVectorStorage):
db: TiDB = field(default=None)
def __post_init__(self):
self._client_file_name = os.path.join(
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
@@ -225,6 +293,15 @@ class TiDBVectorDBStorage(BaseVectorStorage):
)
self.cosine_better_than_threshold = cosine_threshold
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
"""Search from tidb vector"""
embeddings = await self.embedding_func([query])
@@ -282,7 +359,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
"id": item["id"],
"name": item["entity_name"],
"content": item["content"],
"content_vector": f'{item["content_vector"].tolist()}',
"content_vector": f"{item['content_vector'].tolist()}",
"workspace": self.db.workspace,
}
# update entity_id if node inserted by graph_storage_instance before
@@ -304,7 +381,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
"source_name": item["src_id"],
"target_name": item["tgt_id"],
"content": item["content"],
"content_vector": f'{item["content_vector"].tolist()}',
"content_vector": f"{item['content_vector'].tolist()}",
"workspace": self.db.workspace,
}
# update relation_id if node inserted by graph_storage_instance before
@@ -337,12 +414,20 @@ class TiDBVectorDBStorage(BaseVectorStorage):
@final
@dataclass
class TiDBGraphStorage(BaseGraphStorage):
# db instance must be injected before use
# db: TiDB
db: TiDB = field(default=None)
def __post_init__(self):
self._max_batch_size = self.global_config["embedding_batch_num"]
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
#################### upsert method ################
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
entity_name = node_id