support pipeline mode

This commit is contained in:
jin
2025-01-16 12:52:37 +08:00
parent 17a2ec2bc4
commit d5ae6669ea
5 changed files with 374 additions and 323 deletions

View File

@@ -26,6 +26,7 @@ from .utils import (
convert_response_to_json,
logger,
set_logger,
statistic_data
)
from .base import (
BaseGraphStorage,
@@ -36,22 +37,31 @@ from .base import (
DocStatus,
)
from .storage import (
JsonKVStorage,
NanoVectorDBStorage,
NetworkXStorage,
JsonDocStatusStorage,
)
from .prompt import GRAPH_FIELD_SEP
STORAGES = {
"JsonKVStorage": '.storage',
"NanoVectorDBStorage": '.storage',
"NetworkXStorage": '.storage',
"JsonDocStatusStorage": '.storage',
# future KG integrations
# from .kg.ArangoDB_impl import (
# GraphStorage as ArangoDBStorage
# )
"Neo4JStorage":".kg.neo4j_impl",
"OracleKVStorage":".kg.oracle_impl",
"OracleGraphStorage":".kg.oracle_impl",
"OracleVectorDBStorage":".kg.oracle_impl",
"MilvusVectorDBStorge":".kg.milvus_impl",
"MongoKVStorage":".kg.mongo_impl",
"ChromaVectorDBStorage":".kg.chroma_impl",
"TiDBKVStorage":".kg.tidb_impl",
"TiDBVectorDBStorage":".kg.tidb_impl",
"TiDBGraphStorage":".kg.tidb_impl",
"PGKVStorage":".kg.postgres_impl",
"PGVectorStorage":".kg.postgres_impl",
"AGEStorage":".kg.age_impl",
"PGGraphStorage":".kg.postgres_impl",
"GremlinStorage":".kg.gremlin_impl",
"PGDocStatusStorage":".kg.postgres_impl",
}
def lazy_external_import(module_name: str, class_name: str):
"""Lazily import a class from an external module based on the package of the caller."""
@@ -65,36 +75,13 @@ def lazy_external_import(module_name: str, class_name: str):
def import_class(*args, **kwargs):
import importlib
# Import the module using importlib
module = importlib.import_module(module_name, package=package)
# Get the class from the module and instantiate it
cls = getattr(module, class_name)
return cls(*args, **kwargs)
return import_class
Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
OracleDocStatusStorage = lazy_external_import(".kg.oracle_impl", "OracleDocStatusStorage")
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
"""
Ensure that there is always an event loop available.
@@ -198,52 +185,64 @@ class LightRAG:
logger.setLevel(self.log_level)
logger.info(f"Logger initialized for working directory: {self.working_dir}")
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# @TODO: should move all storage setup here to leverage initial start params attached to self.
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
self._get_storage_class()[self.kv_storage]
)
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class()[
self.vector_storage
]
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
self.graph_storage
]
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
self.llm_response_cache = self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
)
# show config
global_config=asdict(self)
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# Init LLM
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
self.embedding_func
)
# Initialize all storages
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = self._get_storage_class(self.kv_storage)
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class(self.vector_storage)
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class(self.graph_storage)
self.key_string_value_json_storage_cls = partial(
self.key_string_value_json_storage_cls,
global_config=global_config
)
self.vector_db_storage_cls = partial(
self.vector_db_storage_cls,
global_config=global_config
)
self.graph_storage_cls = partial(
self.graph_storage_cls,
global_config=global_config
)
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
namespace="json_doc_status_storage",
embedding_func=None,
)
self.llm_response_cache = self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
embedding_func=None,
)
####
# add embedding func by walter
####
self.full_docs = self.key_string_value_json_storage_cls(
namespace="full_docs",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.text_chunks = self.key_string_value_json_storage_cls(
namespace="text_chunks",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph = self.graph_storage_cls(
namespace="chunk_entity_relation",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
####
@@ -252,73 +251,64 @@ class LightRAG:
self.entities_vdb = self.vector_db_storage_cls(
namespace="entities",
global_config=asdict(self),
embedding_func=self.embedding_func,
meta_fields={"entity_name"},
)
self.relationships_vdb = self.vector_db_storage_cls(
namespace="relationships",
global_config=asdict(self),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id"},
)
self.chunks_vdb = self.vector_db_storage_cls(
namespace="chunks",
global_config=asdict(self),
embedding_func=self.embedding_func,
)
if self.llm_response_cache and hasattr(self.llm_response_cache, "global_config"):
hashing_kv = self.llm_response_cache
else:
hashing_kv = self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
embedding_func=None,
)
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(
self.llm_model_func,
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace="llm_response_cache",
global_config=asdict(self),
embedding_func=None,
),
hashing_kv=hashing_kv,
**self.llm_model_kwargs,
)
)
# Initialize document status storage
self.doc_status_storage_cls = self._get_storage_class()[self.doc_status_storage]
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
self.doc_status = self.doc_status_storage_cls(
namespace="doc_status",
global_config=asdict(self),
global_config=global_config,
embedding_func=None,
)
def _get_storage_class(self) -> dict:
return {
# kv storage
"JsonKVStorage": JsonKVStorage,
"OracleKVStorage": OracleKVStorage,
"OracleDocStatusStorage":OracleDocStatusStorage,
"MongoKVStorage": MongoKVStorage,
"TiDBKVStorage": TiDBKVStorage,
# vector storage
"NanoVectorDBStorage": NanoVectorDBStorage,
"OracleVectorDBStorage": OracleVectorDBStorage,
"MilvusVectorDBStorge": MilvusVectorDBStorge,
"ChromaVectorDBStorage": ChromaVectorDBStorage,
"TiDBVectorDBStorage": TiDBVectorDBStorage,
# graph storage
"NetworkXStorage": NetworkXStorage,
"Neo4JStorage": Neo4JStorage,
"OracleGraphStorage": OracleGraphStorage,
"AGEStorage": AGEStorage,
"PGGraphStorage": PGGraphStorage,
"PGKVStorage": PGKVStorage,
"PGDocStatusStorage": PGDocStatusStorage,
"PGVectorStorage": PGVectorStorage,
"TiDBGraphStorage": TiDBGraphStorage,
"GremlinStorage": GremlinStorage,
# "ArangoDBStorage": ArangoDBStorage
"JsonDocStatusStorage": JsonDocStatusStorage,
}
def _get_storage_class(self, storage_name: str) -> dict:
import_path = STORAGES[storage_name]
storage_class = lazy_external_import(import_path, storage_name)
return storage_class
def set_storage_client(self,db_client):
# Now only tested on Oracle Database
for storage in [self.vector_db_storage_cls,
self.graph_storage_cls,
self.doc_status, self.full_docs,
self.text_chunks,
self.llm_response_cache,
self.key_string_value_json_storage_cls,
self.chunks_vdb,
self.relationships_vdb,
self.entities_vdb,
self.graph_storage_cls,
self.chunk_entity_relation_graph,
self.llm_response_cache]:
# set client
storage.db = db_client
def insert(
self, string_or_strings, split_by_character=None, split_by_character_only=False
@@ -358,6 +348,11 @@ class LightRAG:
}
for content in unique_contents
}
# 3. Store original document and chunks
await self.full_docs.upsert(
{doc_id: {"content": doc["content"]}}
)
# 3. Filter out already processed documents
_add_doc_keys = await self.doc_status.filter_keys(list(new_docs.keys()))
@@ -406,12 +401,7 @@ class LightRAG:
}
# Update status with chunks information
doc_status.update(
{
"chunks_count": len(chunks),
"updated_at": datetime.now().isoformat(),
}
)
doc_status.update({"chunks_count": len(chunks),"updated_at": datetime.now().isoformat()})
await self.doc_status.upsert({doc_id: doc_status})
try:
@@ -435,30 +425,16 @@ class LightRAG:
self.chunk_entity_relation_graph = maybe_new_kg
# Store original document and chunks
await self.full_docs.upsert(
{doc_id: {"content": doc["content"]}}
)
await self.text_chunks.upsert(chunks)
# Update status to processed
doc_status.update(
{
"status": DocStatus.PROCESSED,
"updated_at": datetime.now().isoformat(),
}
)
doc_status.update({"status": DocStatus.PROCESSED,"updated_at": datetime.now().isoformat()})
await self.doc_status.upsert({doc_id: doc_status})
except Exception as e:
# Mark as failed if any step fails
doc_status.update(
{
"status": DocStatus.FAILED,
"error": str(e),
"updated_at": datetime.now().isoformat(),
}
)
doc_status.update({"status": DocStatus.FAILED,"error": str(e),"updated_at": datetime.now().isoformat()})
await self.doc_status.upsert({doc_id: doc_status})
raise e
@@ -540,6 +516,174 @@ class LightRAG:
if update_storage:
await self._insert_done()
async def apipeline_process_documents(self, string_or_strings):
"""Input list remove duplicates, generate document IDs and initial pendding status, filter out already stored documents, store docs
Args:
string_or_strings: Single document string or list of document strings
"""
if isinstance(string_or_strings, str):
string_or_strings = [string_or_strings]
# 1. Remove duplicate contents from the list
unique_contents = list(set(doc.strip() for doc in string_or_strings))
logger.info(f"Received {len(string_or_strings)} docs, contains {len(unique_contents)} new unique documents")
# 2. Generate document IDs and initial status
new_docs = {
compute_mdhash_id(content, prefix="doc-"): {
"content": content,
"content_summary": self._get_content_summary(content),
"content_length": len(content),
"status": DocStatus.PENDING,
"created_at": datetime.now().isoformat(),
"updated_at": None,
}
for content in unique_contents
}
# 3. Filter out already processed documents
_not_stored_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
if len(_not_stored_doc_keys) < len(new_docs):
logger.info(f"Skipping {len(new_docs)-len(_not_stored_doc_keys)} already existing documents")
new_docs = {k: v for k, v in new_docs.items() if k in _not_stored_doc_keys}
if not new_docs:
logger.info(f"All documents have been processed or are duplicates")
return None
# 4. Store original document
for doc_id, doc in new_docs.items():
await self.full_docs.upsert({doc_id: {"content": doc["content"]}})
await self.full_docs.change_status(doc_id, DocStatus.PENDING)
logger.info(f"Stored {len(new_docs)} new unique documents")
async def apipeline_process_chunks(self):
"""Get pendding documents, split into chunks,insert chunks"""
# 1. get all pending and failed documents
_todo_doc_keys = []
_failed_doc = await self.full_docs.get_by_status_and_ids(status = DocStatus.FAILED,ids = None)
_pendding_doc = await self.full_docs.get_by_status_and_ids(status = DocStatus.PENDING,ids = None)
if _failed_doc:
_todo_doc_keys.extend([doc["id"] for doc in _failed_doc])
if _pendding_doc:
_todo_doc_keys.extend([doc["id"] for doc in _pendding_doc])
if not _todo_doc_keys:
logger.info("All documents have been processed or are duplicates")
return None
else:
logger.info(f"Filtered out {len(_todo_doc_keys)} not processed documents")
new_docs = {
doc["id"]: doc
for doc in await self.full_docs.get_by_ids(_todo_doc_keys)
}
# 2. split docs into chunks, insert chunks, update doc status
chunk_cnt = 0
batch_size = self.addon_params.get("insert_batch_size", 10)
for i in range(0, len(new_docs), batch_size):
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
for doc_id, doc in tqdm_async(
batch_docs.items(), desc=f"Level 1 - Spliting doc in batch {i//batch_size + 1}"
):
try:
# Generate chunks from document
chunks = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
"status": DocStatus.PENDING,
}
for dp in chunking_by_token_size(
doc["content"],
overlap_token_size=self.chunk_overlap_token_size,
max_token_size=self.chunk_token_size,
tiktoken_model=self.tiktoken_model_name,
)
}
chunk_cnt += len(chunks)
await self.text_chunks.upsert(chunks)
await self.text_chunks.change_status(doc_id, DocStatus.PROCESSED)
try:
# Store chunks in vector database
await self.chunks_vdb.upsert(chunks)
# Update doc status
await self.full_docs.change_status(doc_id, DocStatus.PROCESSED)
except Exception as e:
# Mark as failed if any step fails
await self.full_docs.change_status(doc_id, DocStatus.FAILED)
raise e
except Exception as e:
import traceback
error_msg = f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
logger.error(error_msg)
continue
logger.info(f"Stored {chunk_cnt} chunks from {len(new_docs)} documents")
async def apipeline_process_extract_graph(self):
"""Get pendding or failed chunks, extract entities and relationships from each chunk"""
# 1. get all pending and failed chunks
_todo_chunk_keys = []
_failed_chunks = await self.text_chunks.get_by_status_and_ids(status = DocStatus.FAILED,ids = None)
_pendding_chunks = await self.text_chunks.get_by_status_and_ids(status = DocStatus.PENDING,ids = None)
if _failed_chunks:
_todo_chunk_keys.extend([doc["id"] for doc in _failed_chunks])
if _pendding_chunks:
_todo_chunk_keys.extend([doc["id"] for doc in _pendding_chunks])
if not _todo_chunk_keys:
logger.info("All chunks have been processed or are duplicates")
return None
# Process documents in batches
batch_size = self.addon_params.get("insert_batch_size", 10)
semaphore = asyncio.Semaphore(batch_size) # Control the number of tasks that are processed simultaneously
async def process_chunk(chunk_id):
async with semaphore:
chunks = {i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])}
# Extract and store entities and relationships
try:
maybe_new_kg = await extract_entities(
chunks,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
llm_response_cache=self.llm_response_cache,
global_config=asdict(self),
)
if maybe_new_kg is None:
logger.info("No entities or relationships extracted!")
# Update status to processed
await self.text_chunks.change_status(chunk_id, DocStatus.PROCESSED)
except Exception as e:
logger.error("Failed to extract entities and relationships")
# Mark as failed if any step fails
await self.text_chunks.change_status(chunk_id, DocStatus.FAILED)
raise e
with tqdm_async(total=len(_todo_chunk_keys),
desc="\nLevel 1 - Processing chunks",
unit="chunk",
position=0) as progress:
tasks = []
for chunk_id in _todo_chunk_keys:
task = asyncio.create_task(process_chunk(chunk_id))
tasks.append(task)
for future in asyncio.as_completed(tasks):
await future
progress.update(1)
progress.set_postfix({
'LLM call': statistic_data["llm_call"],
'LLM cache': statistic_data["llm_cache"],
})
# Ensure all indexes are updated after each document
await self._insert_done()
async def _insert_done(self):
tasks = []
for storage_inst in [