update README.md
This commit is contained in:
56
README.md
56
README.md
@@ -9,12 +9,12 @@ This repository hosts the code of LightRAG. The structure of this code is based
|
||||
|
||||
* Install from source
|
||||
|
||||
```
|
||||
```bash
|
||||
cd LightRAG
|
||||
pip install -e .
|
||||
```
|
||||
* Install from PyPI
|
||||
```
|
||||
```bash
|
||||
pip install lightrag-hku
|
||||
```
|
||||
|
||||
@@ -22,12 +22,12 @@ pip install lightrag-hku
|
||||
|
||||
* Set OpenAI API key in environment: `export OPENAI_API_KEY="sk-...".`
|
||||
* Download the demo text "A Christmas Carol by Charles Dickens"
|
||||
```
|
||||
```bash
|
||||
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
|
||||
```
|
||||
Use the below python snippet:
|
||||
|
||||
```
|
||||
```python
|
||||
from lightrag import LightRAG, QueryParam
|
||||
|
||||
rag = LightRAG(working_dir="./dickens")
|
||||
@@ -48,12 +48,12 @@ print(rag.query("What are the top themes in this story?", param=QueryParam(mode=
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybird")))
|
||||
```
|
||||
Batch Insert
|
||||
```
|
||||
```python
|
||||
rag.insert(["TEXT1", "TEXT2",...])
|
||||
```
|
||||
```python
|
||||
Incremental Insert
|
||||
|
||||
```
|
||||
```python
|
||||
rag = LightRAG(working_dir="./dickens")
|
||||
|
||||
with open("./newText.txt") as f:
|
||||
@@ -65,7 +65,7 @@ The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https
|
||||
|
||||
### Generate Query
|
||||
LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`.
|
||||
```
|
||||
```json
|
||||
Given the following description of a dataset:
|
||||
|
||||
{description}
|
||||
@@ -91,7 +91,7 @@ Output the results in the following structure:
|
||||
|
||||
### Batch Eval
|
||||
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
|
||||
```
|
||||
```json
|
||||
---Role---
|
||||
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
||||
---Goal---
|
||||
@@ -134,32 +134,33 @@ Output your evaluation in the following JSON format:
|
||||
}}
|
||||
```
|
||||
### Overall Performance Table
|
||||
### Overall Performance Table
|
||||
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
||||
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
||||
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
||||
| **Comprehensiveness** | 32.69% | <u>67.31%</u> | 35.44% | <u>64.56%</u> | 19.05% | <u>80.95%</u> | 36.36% | <u>63.64%</u> |
|
||||
| **Diversity** | 24.09% | <u>75.91%</u> | 35.24% | <u>64.76%</u> | 10.98% | <u>89.02%</u> | 30.76% | <u>69.24%</u> |
|
||||
| **Empowerment** | 31.35% | <u>68.65%</u> | 35.48% | <u>64.52%</u> | 17.59% | <u>82.41%</u> | 40.95% | <u>59.05%</u> |
|
||||
| **Overall** | 33.30% | <u>66.70%</u> | 34.76% | <u>65.24%</u> | 17.46% | <u>82.54%</u> | 37.59% | <u>62.40%</u> |
|
||||
| **Comprehensiveness** | 32.69% | **67.31%** | 35.44% | **64.56%** | 19.05% | **80.95%** | 36.36% | **63.64%** |
|
||||
| **Diversity** | 24.09% | **75.91%** | 35.24% | **64.76%** | 10.98% | **89.02%** | 30.76% | **69.24%** |
|
||||
| **Empowerment** | 31.35% | **68.65%** | 35.48% | **64.52%** | 17.59% | **82.41%** | 40.95% | **59.05%** |
|
||||
| **Overall** | 33.30% | **66.70%** | 34.76% | **65.24%** | 17.46% | **82.54%** | 37.59% | **62.40%** |
|
||||
| | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** |
|
||||
| **Comprehensiveness** | 32.05% | <u>67.95%</u> | 39.30% | <u>60.70%</u> | 18.57% | <u>81.43%</u> | 38.89% | <u>61.11%</u> |
|
||||
| **Diversity** | 29.44% | <u>70.56%</u> | 38.71% | <u>61.29%</u> | 15.14% | <u>84.86%</u> | 28.50% | <u>71.50%</u> |
|
||||
| **Empowerment** | 32.51% | <u>67.49%</u> | 37.52% | <u>62.48%</u> | 17.80% | <u>82.20%</u> | 43.96% | <u>56.04%</u> |
|
||||
| **Overall** | 33.29% | <u>66.71%</u> | 39.03% | <u>60.97%</u> | 17.80% | <u>82.20%</u> | 39.61% | <u>60.39%</u> |
|
||||
| **Comprehensiveness** | 32.05% | **67.95%** | 39.30% | **60.70%** | 18.57% | **81.43%** | 38.89% | **61.11%** |
|
||||
| **Diversity** | 29.44% | **70.56%** | 38.71% | **61.29%** | 15.14% | **84.86%** | 28.50% | **71.50%** |
|
||||
| **Empowerment** | 32.51% | **67.49%** | 37.52% | **62.48%** | 17.80% | **82.20%** | 43.96% | **56.04%** |
|
||||
| **Overall** | 33.29% | **66.71%** | 39.03% | **60.97%** | 17.80% | **82.20%** | 39.61% | **60.39%** |
|
||||
| | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** |
|
||||
| **Comprehensiveness** | 24.39% | <u>75.61%</u> | 36.49% | <u>63.51%</u> | 27.68% | <u>72.32%</u> | 42.17% | <u>57.83%</u> |
|
||||
| **Diversity** | 24.96% | <u>75.34%</u> | 37.41% | <u>62.59%</u> | 18.79% | <u>81.21%</u> | 30.88% | <u>69.12%</u> |
|
||||
| **Empowerment** | 24.89% | <u>75.11%</u> | 34.99% | <u>65.01%</u> | 26.99% | <u>73.01%</u> | 45.61% |<u>54.39%</u> |
|
||||
| **Overall** | 23.17% | <u>76.83%</u> | 35.67% | <u>64.33%</u> | 27.68% | <u>72.32%</u> | 42.72% | <u>57.28%</u> |
|
||||
| **Comprehensiveness** | 24.39% | **75.61%** | 36.49% | **63.51%** | 27.68% | **72.32%** | 42.17% | **57.83%** |
|
||||
| **Diversity** | 24.96% | **75.34%** | 37.41% | **62.59%** | 18.79% | **81.21%** | 30.88% | **69.12%** |
|
||||
| **Empowerment** | 24.89% | **75.11%** | 34.99% | **65.01%** | 26.99% | **73.01%** | **45.61%** | **54.39%** |
|
||||
| **Overall** | 23.17% | **76.83%** | 35.67% | **64.33%** | 27.68% | **72.32%** | 42.72% | **57.28%** |
|
||||
| | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** |
|
||||
| **Comprehensiveness** | 45.56% | <u>54.44%</u> | 45.98% | <u>54.02%</u> | 47.13% | <u>52.87%</u> | <u>51.86%</u> | 48.14% |
|
||||
| **Diversity** | 19.65% | <u>80.35%</u> | 39.64% | <u>60.36%</u> | 25.55% | <u>74.45%</u> | 35.87% | <u>64.13%</u> |
|
||||
| **Empowerment** | 36.69% | <u>63.31%</u> | 45.09% | <u>54.91%</u> | 42.81% | <u>57.19%</u> | <u>52.94%</u> | 47.06% |
|
||||
| **Overall** | 43.62% | <u>56.38%</u> | 45.98% | <u>54.02%</u> | 45.70% | <u>54.30%</u> | <u>51.86%</u> | 48.14% |
|
||||
| **Comprehensiveness** | 45.56% | **54.44%** | 45.98% | **54.02%** | 47.13% | **52.87%** | **51.86%** | 48.14% |
|
||||
| **Diversity** | 19.65% | **80.35%** | 39.64% | **60.36%** | 25.55% | **74.45%** | 35.87% | **64.13%** |
|
||||
| **Empowerment** | 36.69% | **63.31%** | 45.09% | **54.91%** | 42.81% | **57.19%** | **52.94%** | 47.06% |
|
||||
| **Overall** | 43.62% | **56.38%** | 45.98% | **54.02%** | 45.70% | **54.30%** | **51.86%** | 48.14% |
|
||||
|
||||
## Code Structure
|
||||
|
||||
```
|
||||
```json
|
||||
.
|
||||
├── examples
|
||||
│ ├── batch_eval.py
|
||||
@@ -182,7 +183,7 @@ Output your evaluation in the following JSON format:
|
||||
```
|
||||
## Citation
|
||||
|
||||
```
|
||||
```json
|
||||
@article{guo2024lightrag,
|
||||
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
|
||||
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
|
||||
@@ -192,4 +193,3 @@ archivePrefix={arXiv},
|
||||
primaryClass={cs.IR}
|
||||
}
|
||||
```
|
||||
|
||||
|
Reference in New Issue
Block a user