feat: 增加redis KV存储,增加openai+neo4j+milvus+redis的demo测试,新增lightrag.py: RedisKVStorage,新增requirements.txt:aioredis依赖

This commit is contained in:
hyb
2025-01-22 16:42:13 +08:00
parent 4e5ca51e38
commit e08905b398
4 changed files with 135 additions and 0 deletions

View File

@@ -0,0 +1,69 @@
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_embed, openai_complete_if_cache
from lightrag.utils import EmbeddingFunc
# WorkingDir
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
print(f"WorkingDir: {WORKING_DIR}")
# redis
os.environ["REDIS_URI"] = "redis://localhost:6379"
# neo4j
BATCH_SIZE_NODES = 500
BATCH_SIZE_EDGES = 100
os.environ["NEO4J_URI"] = "bolt://117.50.173.35:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "12345678"
# milvus
os.environ["MILVUS_URI"] = "http://117.50.173.35:19530"
os.environ["MILVUS_USER"] = "root"
os.environ["MILVUS_PASSWORD"] = "Milvus"
os.environ["MILVUS_DB_NAME"] = "lightrag"
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
"deepseek-chat",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key="sk-91d0b59f25554251aa813ed756d79a6d",
base_url="https://api.deepseek.com",
**kwargs,
)
embedding_func = EmbeddingFunc(
embedding_dim=768,
max_token_size=512,
func=lambda texts: ollama_embed(
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
),
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
llm_model_max_token_size=32768,
embedding_func=embedding_func,
chunk_token_size=512,
chunk_overlap_token_size=256,
kv_storage="RedisKVStorage",
graph_storage="Neo4JStorage",
vector_storage="MilvusVectorDBStorge",
doc_status_storage="RedisKVStorage",
)
file = "../book.txt"
with open(file, "r", encoding="utf-8") as f:
rag.insert(f.read())
print(rag.query("谁会3D建模 ", param=QueryParam(mode="mix")))

64
lightrag/kg/redis_impl.py Normal file
View File

@@ -0,0 +1,64 @@
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import aioredis
from lightrag.utils import logger
from lightrag.base import BaseKVStorage
import json
@dataclass
class RedisKVStorage(BaseKVStorage):
def __post_init__(self):
redis_url = os.environ.get("REDIS_URI", "redis://localhost:6379")
self._redis = aioredis.from_url(redis_url, decode_responses=True)
logger.info(f"Use Redis as KV {self.namespace}")
async def all_keys(self) -> list[str]:
keys = await self._redis.keys(f"{self.namespace}:*")
return [key.split(":", 1)[-1] for key in keys]
async def get_by_id(self, id):
data = await self._redis.get(f"{self.namespace}:{id}")
return json.loads(data) if data else None
async def get_by_ids(self, ids, fields=None):
pipe = self._redis.pipeline()
for id in ids:
pipe.get(f"{self.namespace}:{id}")
results = await pipe.execute()
if fields:
# Filter fields if specified
return [
{field: value.get(field) for field in fields if field in value}
if (value := json.loads(result))
else None
for result in results
]
return [json.loads(result) if result else None for result in results]
async def filter_keys(self, data: list[str]) -> set[str]:
pipe = self._redis.pipeline()
for key in data:
pipe.exists(f"{self.namespace}:{key}")
results = await pipe.execute()
existing_ids = {data[i] for i, exists in enumerate(results) if exists}
return set(data) - existing_ids
async def upsert(self, data: dict[str, dict]):
pipe = self._redis.pipeline()
for k, v in tqdm_async(data.items(), desc="Upserting"):
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
await pipe.execute()
for k in data:
data[k]["_id"] = k
return data
async def drop(self):
keys = await self._redis.keys(f"{self.namespace}:*")
if keys:
await self._redis.delete(*keys)

View File

@@ -52,6 +52,7 @@ STORAGES = {
"OracleVectorDBStorage": ".kg.oracle_impl",
"MilvusVectorDBStorge": ".kg.milvus_impl",
"MongoKVStorage": ".kg.mongo_impl",
"RedisKVStorage": ".kg.redis_impl",
"ChromaVectorDBStorage": ".kg.chroma_impl",
"TiDBKVStorage": ".kg.tidb_impl",
"TiDBVectorDBStorage": ".kg.tidb_impl",

View File

@@ -2,6 +2,7 @@ accelerate
aioboto3
aiofiles
aiohttp
aioredis
asyncpg
# database packages