Merge remote-tracking branch 'origin/main'
This commit is contained in:
@@ -15,7 +15,7 @@ from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
Timeout,
|
||||
APITimeoutError,
|
||||
AsyncAzureOpenAI,
|
||||
)
|
||||
from pydantic import BaseModel, Field
|
||||
@@ -47,7 +47,9 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def openai_complete_if_cache(
|
||||
model,
|
||||
@@ -108,7 +110,9 @@ async def openai_complete_if_cache(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APIConnectionError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
@@ -259,7 +263,9 @@ def initialize_hf_model(model_name):
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def hf_model_if_cache(
|
||||
model,
|
||||
@@ -326,7 +332,9 @@ async def hf_model_if_cache(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def ollama_model_if_cache(
|
||||
model,
|
||||
@@ -444,7 +452,9 @@ def initialize_lmdeploy_pipeline(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def lmdeploy_model_if_cache(
|
||||
model,
|
||||
@@ -704,7 +714,9 @@ async def lollms_model_complete(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def zhipu_complete_if_cache(
|
||||
prompt: Union[str, List[Dict[str, str]]],
|
||||
@@ -834,7 +846,9 @@ async def zhipu_complete(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def zhipu_embedding(
|
||||
texts: list[str], model: str = "embedding-3", api_key: str = None, **kwargs
|
||||
@@ -870,7 +884,9 @@ async def zhipu_embedding(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def openai_embedding(
|
||||
texts: list[str],
|
||||
@@ -928,7 +944,9 @@ async def jina_embedding(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def nvidia_openai_embedding(
|
||||
texts: list[str],
|
||||
@@ -959,7 +977,9 @@ async def nvidia_openai_embedding(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_embedding(
|
||||
texts: list[str],
|
||||
@@ -990,7 +1010,9 @@ async def azure_openai_embedding(
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def siliconcloud_embedding(
|
||||
texts: list[str],
|
||||
|
@@ -341,8 +341,14 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
logger.info(f"Loaded document status storage with {len(self._data)} records")
|
||||
|
||||
async def filter_keys(self, data: list[str]) -> set[str]:
|
||||
"""Return keys that don't exist in storage"""
|
||||
return set([k for k in data if k not in self._data])
|
||||
"""Return keys that should be processed (not in storage or not successfully processed)"""
|
||||
return set(
|
||||
[
|
||||
k
|
||||
for k in data
|
||||
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED
|
||||
]
|
||||
)
|
||||
|
||||
async def get_status_counts(self) -> Dict[str, int]:
|
||||
"""Get counts of documents in each status"""
|
||||
|
Reference in New Issue
Block a user