fastapi接收环境变量EMBEDDING_MODEL、LLM_MODEL、OPENAI_API_KEY、OPENAI_BASE_URL以自定模型
This commit is contained in:
@@ -21,19 +21,18 @@ print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
os.environ.get("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -44,21 +43,28 @@ async def llm_model_func(
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
model=os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large"),
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"{embedding_dim=}")
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=8192,
|
||||
func=embedding_func),
|
||||
)
|
||||
|
||||
|
||||
# Data models
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user