Fixed linting

This commit is contained in:
Saifeddine ALOUI
2024-12-19 11:44:01 +01:00
parent 81ba55df7b
commit fe6ebfa995
6 changed files with 238 additions and 157 deletions

2
.gitignore vendored
View File

@@ -14,4 +14,4 @@ ignore_this.txt
.ruff_cache/
gui/
*.log
.vscode
.vscode

2
api/.gitignore vendored
View File

@@ -1,2 +1,2 @@
inputs
rag_storage
rag_storage

View File

@@ -169,4 +169,3 @@ This project is licensed under the MIT License - see the LICENSE file for detail
- Built with [FastAPI](https://fastapi.tiangolo.com/)
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
- Powered by [OpenAI](https://openai.com/) for language model inference

View File

@@ -1,8 +1,5 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import asyncio
import os
import logging
import argparse
from lightrag import LightRAG, QueryParam
@@ -13,7 +10,8 @@ from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import ASCIIColors, trace_exception
from ascii_colors import trace_exception
def parse_args():
parser = argparse.ArgumentParser(
@@ -21,45 +19,84 @@ def parse_args():
)
# Server configuration
parser.add_argument('--host', default='0.0.0.0', help='Server host (default: 0.0.0.0)')
parser.add_argument('--port', type=int, default=9621, help='Server port (default: 9621)')
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument('--working-dir', default='./rag_storage',
help='Working directory for RAG storage (default: ./rag_storage)')
parser.add_argument('--input-dir', default='./inputs',
help='Directory containing input documents (default: ./inputs)')
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument('--model', default='mistral-nemo:latest', help='LLM model name (default: mistral-nemo:latest)')
parser.add_argument('--embedding-model', default='bge-m3:latest',
help='Embedding model name (default: bge-m3:latest)')
parser.add_argument('--ollama-host', default='http://localhost:11434',
help='Ollama host URL (default: http://localhost:11434)')
parser.add_argument(
"--model",
default="mistral-nemo:latest",
help="LLM model name (default: mistral-nemo:latest)",
)
parser.add_argument(
"--embedding-model",
default="bge-m3:latest",
help="Embedding model name (default: bge-m3:latest)",
)
parser.add_argument(
"--ollama-host",
default="http://localhost:11434",
help="Ollama host URL (default: http://localhost:11434)",
)
# RAG configuration
parser.add_argument('--max-async', type=int, default=4, help='Maximum async operations (default: 4)')
parser.add_argument('--max-tokens', type=int, default=32768, help='Maximum token size (default: 32768)')
parser.add_argument('--embedding-dim', type=int, default=1024,
help='Embedding dimensions (default: 1024)')
parser.add_argument('--max-embed-tokens', type=int, default=8192,
help='Maximum embedding token size (default: 8192)')
parser.add_argument(
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
)
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=1024,
help="Embedding dimensions (default: 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument('--log-level', default='INFO',
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
help='Logging level (default: INFO)')
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = ('.txt', '.md')):
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
@@ -67,7 +104,7 @@ class DocumentManager:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f'*{ext}'):
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
@@ -80,6 +117,7 @@ class DocumentManager:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
@@ -87,31 +125,38 @@ class SearchMode(str, Enum):
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
def create_app(args):
# Setup logging
logging.basicConfig(format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level))
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Initialize FastAPI app
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with separate storage and input directories"
description="API for querying text using LightRAG with separate storage and input directories",
)
# Create working directory if it doesn't exist
@@ -127,7 +172,10 @@ def create_app(args):
llm_model_name=args.model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
llm_model_kwargs={"host": args.ollama_host, "options": {"num_ctx": args.max_tokens}},
llm_model_kwargs={
"host": args.ollama_host,
"options": {"num_ctx": args.max_tokens},
},
embedding_func=EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
@@ -136,6 +184,7 @@ def create_app(args):
),
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
@@ -144,7 +193,7 @@ def create_app(args):
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, 'r', encoding='utf-8') as f:
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
@@ -153,9 +202,9 @@ def create_app(args):
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@@ -165,21 +214,21 @@ def create_app(args):
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, 'r', encoding='utf-8') as f:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files)
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -191,23 +240,23 @@ def create_app(args):
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files)
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -217,9 +266,9 @@ def create_app(args):
try:
response = await rag.aquery(
request.query,
param=QueryParam(mode=request.mode, stream=request.stream)
param=QueryParam(mode=request.mode, stream=request.stream),
)
if request.stream:
result = ""
async for chunk in response:
@@ -234,14 +283,13 @@ def create_app(args):
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query,
param=QueryParam(mode=request.mode, stream=True)
request.query, param=QueryParam(mode=request.mode, stream=True)
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -253,32 +301,29 @@ def create_app(args):
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag)
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/file", response_model=InsertResponse)
async def insert_file(
file: UploadFile = File(...),
description: str = Form(None)
):
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith(('.txt', '.md')):
text = content.decode('utf-8')
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported"
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=len(rag)
document_count=len(rag),
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
@@ -290,27 +335,27 @@ def create_app(args):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith(('.txt', '.md')):
text = content.decode('utf-8')
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(rag)
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -324,12 +369,11 @@ def create_app(args):
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def get_status():
"""Get current system status"""
@@ -342,14 +386,16 @@ def create_app(args):
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"ollama_host": args.ollama_host
}
"ollama_host": args.ollama_host,
},
}
return app
if __name__ == "__main__":
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)

View File

@@ -1,8 +1,6 @@
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import asyncio
import os
import logging
import argparse
from lightrag import LightRAG, QueryParam
@@ -13,53 +11,81 @@ from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import ASCIIColors, trace_exception
import numpy as np
from ascii_colors import trace_exception
import nest_asyncio
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with OpenAI integration"
)
# Server configuration
parser.add_argument('--host', default='0.0.0.0', help='Server host (default: 0.0.0.0)')
parser.add_argument('--port', type=int, default=9621, help='Server port (default: 9621)')
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument('--working-dir', default='./rag_storage',
help='Working directory for RAG storage (default: ./rag_storage)')
parser.add_argument('--input-dir', default='./inputs',
help='Directory containing input documents (default: ./inputs)')
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument('--model', default='gpt-4', help='OpenAI model name (default: gpt-4)')
parser.add_argument('--embedding-model', default='text-embedding-3-large',
help='OpenAI embedding model (default: text-embedding-3-large)')
parser.add_argument(
"--model", default="gpt-4", help="OpenAI model name (default: gpt-4)"
)
parser.add_argument(
"--embedding-model",
default="text-embedding-3-large",
help="OpenAI embedding model (default: text-embedding-3-large)",
)
# RAG configuration
parser.add_argument('--max-tokens', type=int, default=32768, help='Maximum token size (default: 32768)')
parser.add_argument('--max-embed-tokens', type=int, default=8192,
help='Maximum embedding token size (default: 8192)')
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument('--log-level', default='INFO',
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
help='Logging level (default: INFO)')
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = ('.txt', '.md')):
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
@@ -67,7 +93,7 @@ class DocumentManager:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f'*{ext}'):
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
@@ -80,6 +106,7 @@ class DocumentManager:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
@@ -87,37 +114,45 @@ class SearchMode(str, Enum):
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
async def get_embedding_dim(embedding_model: str) -> int:
"""Get embedding dimensions for the specified model"""
test_text = ["This is a test sentence."]
embedding = await openai_embedding(test_text, model=embedding_model)
return embedding.shape[1]
def create_app(args):
# Setup logging
logging.basicConfig(format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level))
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Initialize FastAPI app
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with OpenAI integration"
description="API for querying text using LightRAG with OpenAI integration",
)
# Create working directory if it doesn't exist
@@ -129,6 +164,18 @@ def create_app(args):
# Get embedding dimensions
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
async def async_openai_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
):
"""Async wrapper for OpenAI completion"""
return await openai_complete_if_cache(
args.model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
# Initialize RAG with OpenAI configuration
rag = LightRAG(
working_dir=args.working_dir,
@@ -142,15 +189,6 @@ def create_app(args):
),
)
async def async_openai_complete(prompt, system_prompt=None, history_messages=[], **kwargs):
"""Async wrapper for OpenAI completion"""
return await openai_complete_if_cache(
args.model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
@@ -159,7 +197,7 @@ def create_app(args):
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, 'r', encoding='utf-8') as f:
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
@@ -168,9 +206,9 @@ def create_app(args):
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@@ -180,21 +218,21 @@ def create_app(args):
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, 'r', encoding='utf-8') as f:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files)
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -206,23 +244,23 @@ def create_app(args):
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files)
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -232,9 +270,9 @@ def create_app(args):
try:
response = await rag.aquery(
request.query,
param=QueryParam(mode=request.mode, stream=request.stream)
param=QueryParam(mode=request.mode, stream=request.stream),
)
if request.stream:
result = ""
async for chunk in response:
@@ -249,14 +287,13 @@ def create_app(args):
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query,
param=QueryParam(mode=request.mode, stream=True)
request.query, param=QueryParam(mode=request.mode, stream=True)
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -268,32 +305,29 @@ def create_app(args):
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag)
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/file", response_model=InsertResponse)
async def insert_file(
file: UploadFile = File(...),
description: str = Form(None)
):
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith(('.txt', '.md')):
text = content.decode('utf-8')
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported"
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=len(rag)
document_count=len(rag),
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
@@ -305,27 +339,27 @@ def create_app(args):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith(('.txt', '.md')):
text = content.decode('utf-8')
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(rag)
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -339,7 +373,7 @@ def create_app(args):
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@@ -356,14 +390,16 @@ def create_app(args):
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"embedding_dim": embedding_dim
}
"embedding_dim": embedding_dim,
},
}
return app
if __name__ == "__main__":
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)

View File

@@ -1,4 +1,4 @@
ascii_colors
fastapi
uvicorn
python-multipart
ascii_colors
uvicorn