Fixed linting
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -14,4 +14,4 @@ ignore_this.txt
|
||||
.ruff_cache/
|
||||
gui/
|
||||
*.log
|
||||
.vscode
|
||||
.vscode
|
||||
|
2
api/.gitignore
vendored
2
api/.gitignore
vendored
@@ -1,2 +1,2 @@
|
||||
inputs
|
||||
rag_storage
|
||||
rag_storage
|
||||
|
@@ -169,4 +169,3 @@ This project is licensed under the MIT License - see the LICENSE file for detail
|
||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
||||
- Powered by [OpenAI](https://openai.com/) for language model inference
|
||||
|
||||
|
@@ -1,8 +1,5 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
import asyncio
|
||||
import os
|
||||
import logging
|
||||
import argparse
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -13,7 +10,8 @@ from enum import Enum
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import aiofiles
|
||||
from ascii_colors import ASCIIColors, trace_exception
|
||||
from ascii_colors import trace_exception
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
@@ -21,45 +19,84 @@ def parse_args():
|
||||
)
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument('--host', default='0.0.0.0', help='Server host (default: 0.0.0.0)')
|
||||
parser.add_argument('--port', type=int, default=9621, help='Server port (default: 9621)')
|
||||
|
||||
parser.add_argument(
|
||||
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
||||
)
|
||||
|
||||
# Directory configuration
|
||||
parser.add_argument('--working-dir', default='./rag_storage',
|
||||
help='Working directory for RAG storage (default: ./rag_storage)')
|
||||
parser.add_argument('--input-dir', default='./inputs',
|
||||
help='Directory containing input documents (default: ./inputs)')
|
||||
|
||||
parser.add_argument(
|
||||
"--working-dir",
|
||||
default="./rag_storage",
|
||||
help="Working directory for RAG storage (default: ./rag_storage)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-dir",
|
||||
default="./inputs",
|
||||
help="Directory containing input documents (default: ./inputs)",
|
||||
)
|
||||
|
||||
# Model configuration
|
||||
parser.add_argument('--model', default='mistral-nemo:latest', help='LLM model name (default: mistral-nemo:latest)')
|
||||
parser.add_argument('--embedding-model', default='bge-m3:latest',
|
||||
help='Embedding model name (default: bge-m3:latest)')
|
||||
parser.add_argument('--ollama-host', default='http://localhost:11434',
|
||||
help='Ollama host URL (default: http://localhost:11434)')
|
||||
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
default="mistral-nemo:latest",
|
||||
help="LLM model name (default: mistral-nemo:latest)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
default="bge-m3:latest",
|
||||
help="Embedding model name (default: bge-m3:latest)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ollama-host",
|
||||
default="http://localhost:11434",
|
||||
help="Ollama host URL (default: http://localhost:11434)",
|
||||
)
|
||||
|
||||
# RAG configuration
|
||||
parser.add_argument('--max-async', type=int, default=4, help='Maximum async operations (default: 4)')
|
||||
parser.add_argument('--max-tokens', type=int, default=32768, help='Maximum token size (default: 32768)')
|
||||
parser.add_argument('--embedding-dim', type=int, default=1024,
|
||||
help='Embedding dimensions (default: 1024)')
|
||||
parser.add_argument('--max-embed-tokens', type=int, default=8192,
|
||||
help='Maximum embedding token size (default: 8192)')
|
||||
|
||||
parser.add_argument(
|
||||
"--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
type=int,
|
||||
default=32768,
|
||||
help="Maximum token size (default: 32768)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-dim",
|
||||
type=int,
|
||||
default=1024,
|
||||
help="Embedding dimensions (default: 1024)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-embed-tokens",
|
||||
type=int,
|
||||
default=8192,
|
||||
help="Maximum embedding token size (default: 8192)",
|
||||
)
|
||||
|
||||
# Logging configuration
|
||||
parser.add_argument('--log-level', default='INFO',
|
||||
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
|
||||
help='Logging level (default: INFO)')
|
||||
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
default="INFO",
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||||
help="Logging level (default: INFO)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class DocumentManager:
|
||||
"""Handles document operations and tracking"""
|
||||
|
||||
def __init__(self, input_dir: str, supported_extensions: tuple = ('.txt', '.md')):
|
||||
|
||||
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
||||
self.input_dir = Path(input_dir)
|
||||
self.supported_extensions = supported_extensions
|
||||
self.indexed_files = set()
|
||||
|
||||
|
||||
# Create input directory if it doesn't exist
|
||||
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@@ -67,7 +104,7 @@ class DocumentManager:
|
||||
"""Scan input directory for new files"""
|
||||
new_files = []
|
||||
for ext in self.supported_extensions:
|
||||
for file_path in self.input_dir.rglob(f'*{ext}'):
|
||||
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||
if file_path not in self.indexed_files:
|
||||
new_files.append(file_path)
|
||||
return new_files
|
||||
@@ -80,6 +117,7 @@ class DocumentManager:
|
||||
"""Check if file type is supported"""
|
||||
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||||
|
||||
|
||||
# Pydantic models
|
||||
class SearchMode(str, Enum):
|
||||
naive = "naive"
|
||||
@@ -87,31 +125,38 @@ class SearchMode(str, Enum):
|
||||
global_ = "global"
|
||||
hybrid = "hybrid"
|
||||
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: SearchMode = SearchMode.hybrid
|
||||
stream: bool = False
|
||||
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
class InsertResponse(BaseModel):
|
||||
status: str
|
||||
message: str
|
||||
document_count: int
|
||||
|
||||
|
||||
def create_app(args):
|
||||
# Setup logging
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level))
|
||||
logging.basicConfig(
|
||||
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
||||
)
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="LightRAG API",
|
||||
description="API for querying text using LightRAG with separate storage and input directories"
|
||||
description="API for querying text using LightRAG with separate storage and input directories",
|
||||
)
|
||||
|
||||
# Create working directory if it doesn't exist
|
||||
@@ -127,7 +172,10 @@ def create_app(args):
|
||||
llm_model_name=args.model,
|
||||
llm_model_max_async=args.max_async,
|
||||
llm_model_max_token_size=args.max_tokens,
|
||||
llm_model_kwargs={"host": args.ollama_host, "options": {"num_ctx": args.max_tokens}},
|
||||
llm_model_kwargs={
|
||||
"host": args.ollama_host,
|
||||
"options": {"num_ctx": args.max_tokens},
|
||||
},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=args.embedding_dim,
|
||||
max_token_size=args.max_embed_tokens,
|
||||
@@ -136,6 +184,7 @@ def create_app(args):
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Index all files in input directory during startup"""
|
||||
@@ -144,7 +193,7 @@ def create_app(args):
|
||||
for file_path in new_files:
|
||||
try:
|
||||
# Use async file reading
|
||||
async with aiofiles.open(file_path, 'r', encoding='utf-8') as f:
|
||||
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
||||
content = await f.read()
|
||||
# Use the async version of insert directly
|
||||
await rag.ainsert(content)
|
||||
@@ -153,9 +202,9 @@ def create_app(args):
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
|
||||
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during startup indexing: {str(e)}")
|
||||
|
||||
@@ -165,21 +214,21 @@ def create_app(args):
|
||||
try:
|
||||
new_files = doc_manager.scan_directory()
|
||||
indexed_count = 0
|
||||
|
||||
|
||||
for file_path in new_files:
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
rag.insert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
indexed_count += 1
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"indexed_count": indexed_count,
|
||||
"total_documents": len(doc_manager.indexed_files)
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -191,23 +240,23 @@ def create_app(args):
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||
)
|
||||
|
||||
|
||||
file_path = doc_manager.input_dir / file.filename
|
||||
with open(file_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
|
||||
# Immediately index the uploaded file
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
rag.insert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"File uploaded and indexed: {file.filename}",
|
||||
"total_documents": len(doc_manager.indexed_files)
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -217,9 +266,9 @@ def create_app(args):
|
||||
try:
|
||||
response = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=request.stream)
|
||||
param=QueryParam(mode=request.mode, stream=request.stream),
|
||||
)
|
||||
|
||||
|
||||
if request.stream:
|
||||
result = ""
|
||||
async for chunk in response:
|
||||
@@ -234,14 +283,13 @@ def create_app(args):
|
||||
async def query_text_stream(request: QueryRequest):
|
||||
try:
|
||||
response = rag.query(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=True)
|
||||
request.query, param=QueryParam(mode=request.mode, stream=True)
|
||||
)
|
||||
|
||||
|
||||
async def stream_generator():
|
||||
async for chunk in response:
|
||||
yield chunk
|
||||
|
||||
|
||||
return stream_generator()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -253,32 +301,29 @@ def create_app(args):
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully inserted",
|
||||
document_count=len(rag)
|
||||
document_count=len(rag),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/file", response_model=InsertResponse)
|
||||
async def insert_file(
|
||||
file: UploadFile = File(...),
|
||||
description: str = Form(None)
|
||||
):
|
||||
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
||||
try:
|
||||
content = await file.read()
|
||||
|
||||
if file.filename.endswith(('.txt', '.md')):
|
||||
text = content.decode('utf-8')
|
||||
|
||||
if file.filename.endswith((".txt", ".md")):
|
||||
text = content.decode("utf-8")
|
||||
rag.insert(text)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="Unsupported file type. Only .txt and .md files are supported"
|
||||
detail="Unsupported file type. Only .txt and .md files are supported",
|
||||
)
|
||||
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' successfully inserted",
|
||||
document_count=len(rag)
|
||||
document_count=len(rag),
|
||||
)
|
||||
except UnicodeDecodeError:
|
||||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||||
@@ -290,27 +335,27 @@ def create_app(args):
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
|
||||
|
||||
for file in files:
|
||||
try:
|
||||
content = await file.read()
|
||||
if file.filename.endswith(('.txt', '.md')):
|
||||
text = content.decode('utf-8')
|
||||
if file.filename.endswith((".txt", ".md")):
|
||||
text = content.decode("utf-8")
|
||||
rag.insert(text)
|
||||
inserted_count += 1
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
except Exception as e:
|
||||
failed_files.append(f"{file.filename} ({str(e)})")
|
||||
|
||||
|
||||
status_message = f"Successfully inserted {inserted_count} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
|
||||
return InsertResponse(
|
||||
status="success" if inserted_count > 0 else "partial_success",
|
||||
message=status_message,
|
||||
document_count=len(rag)
|
||||
document_count=len(rag),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -324,12 +369,11 @@ def create_app(args):
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="All documents cleared successfully",
|
||||
document_count=0
|
||||
document_count=0,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def get_status():
|
||||
"""Get current system status"""
|
||||
@@ -342,14 +386,16 @@ def create_app(args):
|
||||
"model": args.model,
|
||||
"embedding_model": args.embedding_model,
|
||||
"max_tokens": args.max_tokens,
|
||||
"ollama_host": args.ollama_host
|
||||
}
|
||||
"ollama_host": args.ollama_host,
|
||||
},
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
|
@@ -1,8 +1,6 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
import asyncio
|
||||
import os
|
||||
import logging
|
||||
import argparse
|
||||
from lightrag import LightRAG, QueryParam
|
||||
@@ -13,53 +11,81 @@ from enum import Enum
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import aiofiles
|
||||
from ascii_colors import ASCIIColors, trace_exception
|
||||
import numpy as np
|
||||
from ascii_colors import trace_exception
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LightRAG FastAPI Server with OpenAI integration"
|
||||
)
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument('--host', default='0.0.0.0', help='Server host (default: 0.0.0.0)')
|
||||
parser.add_argument('--port', type=int, default=9621, help='Server port (default: 9621)')
|
||||
|
||||
parser.add_argument(
|
||||
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
||||
)
|
||||
|
||||
# Directory configuration
|
||||
parser.add_argument('--working-dir', default='./rag_storage',
|
||||
help='Working directory for RAG storage (default: ./rag_storage)')
|
||||
parser.add_argument('--input-dir', default='./inputs',
|
||||
help='Directory containing input documents (default: ./inputs)')
|
||||
|
||||
parser.add_argument(
|
||||
"--working-dir",
|
||||
default="./rag_storage",
|
||||
help="Working directory for RAG storage (default: ./rag_storage)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-dir",
|
||||
default="./inputs",
|
||||
help="Directory containing input documents (default: ./inputs)",
|
||||
)
|
||||
|
||||
# Model configuration
|
||||
parser.add_argument('--model', default='gpt-4', help='OpenAI model name (default: gpt-4)')
|
||||
parser.add_argument('--embedding-model', default='text-embedding-3-large',
|
||||
help='OpenAI embedding model (default: text-embedding-3-large)')
|
||||
|
||||
parser.add_argument(
|
||||
"--model", default="gpt-4", help="OpenAI model name (default: gpt-4)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
default="text-embedding-3-large",
|
||||
help="OpenAI embedding model (default: text-embedding-3-large)",
|
||||
)
|
||||
|
||||
# RAG configuration
|
||||
parser.add_argument('--max-tokens', type=int, default=32768, help='Maximum token size (default: 32768)')
|
||||
parser.add_argument('--max-embed-tokens', type=int, default=8192,
|
||||
help='Maximum embedding token size (default: 8192)')
|
||||
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
type=int,
|
||||
default=32768,
|
||||
help="Maximum token size (default: 32768)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-embed-tokens",
|
||||
type=int,
|
||||
default=8192,
|
||||
help="Maximum embedding token size (default: 8192)",
|
||||
)
|
||||
|
||||
# Logging configuration
|
||||
parser.add_argument('--log-level', default='INFO',
|
||||
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
|
||||
help='Logging level (default: INFO)')
|
||||
|
||||
parser.add_argument(
|
||||
"--log-level",
|
||||
default="INFO",
|
||||
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||||
help="Logging level (default: INFO)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class DocumentManager:
|
||||
"""Handles document operations and tracking"""
|
||||
|
||||
def __init__(self, input_dir: str, supported_extensions: tuple = ('.txt', '.md')):
|
||||
|
||||
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
||||
self.input_dir = Path(input_dir)
|
||||
self.supported_extensions = supported_extensions
|
||||
self.indexed_files = set()
|
||||
|
||||
|
||||
# Create input directory if it doesn't exist
|
||||
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@@ -67,7 +93,7 @@ class DocumentManager:
|
||||
"""Scan input directory for new files"""
|
||||
new_files = []
|
||||
for ext in self.supported_extensions:
|
||||
for file_path in self.input_dir.rglob(f'*{ext}'):
|
||||
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||||
if file_path not in self.indexed_files:
|
||||
new_files.append(file_path)
|
||||
return new_files
|
||||
@@ -80,6 +106,7 @@ class DocumentManager:
|
||||
"""Check if file type is supported"""
|
||||
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||||
|
||||
|
||||
# Pydantic models
|
||||
class SearchMode(str, Enum):
|
||||
naive = "naive"
|
||||
@@ -87,37 +114,45 @@ class SearchMode(str, Enum):
|
||||
global_ = "global"
|
||||
hybrid = "hybrid"
|
||||
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: SearchMode = SearchMode.hybrid
|
||||
stream: bool = False
|
||||
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
class InsertResponse(BaseModel):
|
||||
status: str
|
||||
message: str
|
||||
document_count: int
|
||||
|
||||
|
||||
async def get_embedding_dim(embedding_model: str) -> int:
|
||||
"""Get embedding dimensions for the specified model"""
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await openai_embedding(test_text, model=embedding_model)
|
||||
return embedding.shape[1]
|
||||
|
||||
|
||||
def create_app(args):
|
||||
# Setup logging
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level))
|
||||
logging.basicConfig(
|
||||
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
||||
)
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="LightRAG API",
|
||||
description="API for querying text using LightRAG with OpenAI integration"
|
||||
description="API for querying text using LightRAG with OpenAI integration",
|
||||
)
|
||||
|
||||
# Create working directory if it doesn't exist
|
||||
@@ -129,6 +164,18 @@ def create_app(args):
|
||||
# Get embedding dimensions
|
||||
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
|
||||
|
||||
async def async_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
):
|
||||
"""Async wrapper for OpenAI completion"""
|
||||
return await openai_complete_if_cache(
|
||||
args.model,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Initialize RAG with OpenAI configuration
|
||||
rag = LightRAG(
|
||||
working_dir=args.working_dir,
|
||||
@@ -142,15 +189,6 @@ def create_app(args):
|
||||
),
|
||||
)
|
||||
|
||||
async def async_openai_complete(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||
"""Async wrapper for OpenAI completion"""
|
||||
return await openai_complete_if_cache(
|
||||
args.model,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs
|
||||
)
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Index all files in input directory during startup"""
|
||||
@@ -159,7 +197,7 @@ def create_app(args):
|
||||
for file_path in new_files:
|
||||
try:
|
||||
# Use async file reading
|
||||
async with aiofiles.open(file_path, 'r', encoding='utf-8') as f:
|
||||
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
||||
content = await f.read()
|
||||
# Use the async version of insert directly
|
||||
await rag.ainsert(content)
|
||||
@@ -168,9 +206,9 @@ def create_app(args):
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
|
||||
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during startup indexing: {str(e)}")
|
||||
|
||||
@@ -180,21 +218,21 @@ def create_app(args):
|
||||
try:
|
||||
new_files = doc_manager.scan_directory()
|
||||
indexed_count = 0
|
||||
|
||||
|
||||
for file_path in new_files:
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
rag.insert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
indexed_count += 1
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"indexed_count": indexed_count,
|
||||
"total_documents": len(doc_manager.indexed_files)
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -206,23 +244,23 @@ def create_app(args):
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||||
)
|
||||
|
||||
|
||||
file_path = doc_manager.input_dir / file.filename
|
||||
with open(file_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
|
||||
# Immediately index the uploaded file
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
rag.insert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"File uploaded and indexed: {file.filename}",
|
||||
"total_documents": len(doc_manager.indexed_files)
|
||||
"total_documents": len(doc_manager.indexed_files),
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -232,9 +270,9 @@ def create_app(args):
|
||||
try:
|
||||
response = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=request.stream)
|
||||
param=QueryParam(mode=request.mode, stream=request.stream),
|
||||
)
|
||||
|
||||
|
||||
if request.stream:
|
||||
result = ""
|
||||
async for chunk in response:
|
||||
@@ -249,14 +287,13 @@ def create_app(args):
|
||||
async def query_text_stream(request: QueryRequest):
|
||||
try:
|
||||
response = rag.query(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=True)
|
||||
request.query, param=QueryParam(mode=request.mode, stream=True)
|
||||
)
|
||||
|
||||
|
||||
async def stream_generator():
|
||||
async for chunk in response:
|
||||
yield chunk
|
||||
|
||||
|
||||
return stream_generator()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -268,32 +305,29 @@ def create_app(args):
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully inserted",
|
||||
document_count=len(rag)
|
||||
document_count=len(rag),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/file", response_model=InsertResponse)
|
||||
async def insert_file(
|
||||
file: UploadFile = File(...),
|
||||
description: str = Form(None)
|
||||
):
|
||||
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
||||
try:
|
||||
content = await file.read()
|
||||
|
||||
if file.filename.endswith(('.txt', '.md')):
|
||||
text = content.decode('utf-8')
|
||||
|
||||
if file.filename.endswith((".txt", ".md")):
|
||||
text = content.decode("utf-8")
|
||||
rag.insert(text)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="Unsupported file type. Only .txt and .md files are supported"
|
||||
detail="Unsupported file type. Only .txt and .md files are supported",
|
||||
)
|
||||
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' successfully inserted",
|
||||
document_count=len(rag)
|
||||
document_count=len(rag),
|
||||
)
|
||||
except UnicodeDecodeError:
|
||||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||||
@@ -305,27 +339,27 @@ def create_app(args):
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
|
||||
|
||||
for file in files:
|
||||
try:
|
||||
content = await file.read()
|
||||
if file.filename.endswith(('.txt', '.md')):
|
||||
text = content.decode('utf-8')
|
||||
if file.filename.endswith((".txt", ".md")):
|
||||
text = content.decode("utf-8")
|
||||
rag.insert(text)
|
||||
inserted_count += 1
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
except Exception as e:
|
||||
failed_files.append(f"{file.filename} ({str(e)})")
|
||||
|
||||
|
||||
status_message = f"Successfully inserted {inserted_count} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
|
||||
return InsertResponse(
|
||||
status="success" if inserted_count > 0 else "partial_success",
|
||||
message=status_message,
|
||||
document_count=len(rag)
|
||||
document_count=len(rag),
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -339,7 +373,7 @@ def create_app(args):
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="All documents cleared successfully",
|
||||
document_count=0
|
||||
document_count=0,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
@@ -356,14 +390,16 @@ def create_app(args):
|
||||
"model": args.model,
|
||||
"embedding_model": args.embedding_model,
|
||||
"max_tokens": args.max_tokens,
|
||||
"embedding_dim": embedding_dim
|
||||
}
|
||||
"embedding_dim": embedding_dim,
|
||||
},
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
|
@@ -1,4 +1,4 @@
|
||||
ascii_colors
|
||||
fastapi
|
||||
uvicorn
|
||||
python-multipart
|
||||
ascii_colors
|
||||
uvicorn
|
||||
|
Reference in New Issue
Block a user