Compare commits
13 Commits
87d87f4ed6
...
b8226493e1
Author | SHA1 | Date | |
---|---|---|---|
b8226493e1
|
|||
1dda186ff8
|
|||
9067d5329b
|
|||
|
c300f2fc91 | ||
|
3b9c28fae9 | ||
|
e14c69ce4a | ||
|
a6046bf827 | ||
|
bb27bb4309 | ||
|
690f701781 | ||
|
1b6ddcaf5b | ||
|
62b536ea6f | ||
|
4d806a1263 | ||
|
3d418d95c5 |
@@ -53,7 +53,6 @@ async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwar
|
|||||||
prompt,
|
prompt,
|
||||||
system_prompt=system_prompt,
|
system_prompt=system_prompt,
|
||||||
history_messages=history_messages,
|
history_messages=history_messages,
|
||||||
**kwargs,
|
|
||||||
)
|
)
|
||||||
return response
|
return response
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
@@ -0,0 +1,155 @@
|
|||||||
|
import os
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.llm.llama_index_impl import (
|
||||||
|
llama_index_complete_if_cache,
|
||||||
|
llama_index_embed,
|
||||||
|
)
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
from llama_index.llms.litellm import LiteLLM
|
||||||
|
from llama_index.embeddings.litellm import LiteLLMEmbedding
|
||||||
|
import asyncio
|
||||||
|
import nest_asyncio
|
||||||
|
|
||||||
|
nest_asyncio.apply()
|
||||||
|
|
||||||
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||||
|
|
||||||
|
# Configure working directory
|
||||||
|
WORKING_DIR = "./index_default"
|
||||||
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||||
|
|
||||||
|
# Model configuration
|
||||||
|
LLM_MODEL = os.environ.get("LLM_MODEL", "gemma-3-4b")
|
||||||
|
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||||
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "arctic-embed")
|
||||||
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||||
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||||
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||||
|
|
||||||
|
# LiteLLM configuration
|
||||||
|
LITELLM_URL = os.environ.get("LITELLM_URL", "http://localhost:4000")
|
||||||
|
print(f"LITELLM_URL: {LITELLM_URL}")
|
||||||
|
LITELLM_KEY = os.environ.get("LITELLM_KEY", "sk-4JdvGFKqSA3S0k_5p0xufw")
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize LLM function
|
||||||
|
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||||
|
try:
|
||||||
|
# Initialize LiteLLM if not in kwargs
|
||||||
|
if "llm_instance" not in kwargs:
|
||||||
|
llm_instance = LiteLLM(
|
||||||
|
model=f"openai/{LLM_MODEL}", # Format: "provider/model_name"
|
||||||
|
api_base=LITELLM_URL,
|
||||||
|
api_key=LITELLM_KEY,
|
||||||
|
temperature=0.7,
|
||||||
|
)
|
||||||
|
kwargs["llm_instance"] = llm_instance
|
||||||
|
|
||||||
|
chat_kwargs = {}
|
||||||
|
chat_kwargs["litellm_params"] = {
|
||||||
|
"metadata": {
|
||||||
|
"opik": {
|
||||||
|
"project_name": "lightrag_llamaindex_litellm_opik_demo",
|
||||||
|
"tags": ["lightrag", "litellm"],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
response = await llama_index_complete_if_cache(
|
||||||
|
kwargs["llm_instance"],
|
||||||
|
prompt,
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
history_messages=history_messages,
|
||||||
|
chat_kwargs=chat_kwargs,
|
||||||
|
)
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
print(f"LLM request failed: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize embedding function
|
||||||
|
async def embedding_func(texts):
|
||||||
|
try:
|
||||||
|
embed_model = LiteLLMEmbedding(
|
||||||
|
model_name=f"openai/{EMBEDDING_MODEL}",
|
||||||
|
api_base=LITELLM_URL,
|
||||||
|
api_key=LITELLM_KEY,
|
||||||
|
)
|
||||||
|
return await llama_index_embed(texts, embed_model=embed_model)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Embedding failed: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
# Get embedding dimension
|
||||||
|
async def get_embedding_dim():
|
||||||
|
test_text = ["This is a test sentence."]
|
||||||
|
embedding = await embedding_func(test_text)
|
||||||
|
embedding_dim = embedding.shape[1]
|
||||||
|
print(f"embedding_dim={embedding_dim}")
|
||||||
|
return embedding_dim
|
||||||
|
|
||||||
|
|
||||||
|
async def initialize_rag():
|
||||||
|
embedding_dimension = await get_embedding_dim()
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=embedding_dimension,
|
||||||
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||||
|
func=embedding_func,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
await rag.initialize_storages()
|
||||||
|
await initialize_pipeline_status()
|
||||||
|
|
||||||
|
return rag
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Initialize RAG instance
|
||||||
|
rag = asyncio.run(initialize_rag())
|
||||||
|
|
||||||
|
# Insert example text
|
||||||
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||||
|
rag.insert(f.read())
|
||||||
|
|
||||||
|
# Test different query modes
|
||||||
|
print("\nNaive Search:")
|
||||||
|
print(
|
||||||
|
rag.query(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\nLocal Search:")
|
||||||
|
print(
|
||||||
|
rag.query(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\nGlobal Search:")
|
||||||
|
print(
|
||||||
|
rag.query(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
print("\nHybrid Search:")
|
||||||
|
print(
|
||||||
|
rag.query(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@@ -84,22 +84,30 @@ class InsertTextRequest(BaseModel):
|
|||||||
|
|
||||||
Attributes:
|
Attributes:
|
||||||
text: The text content to be inserted into the RAG system
|
text: The text content to be inserted into the RAG system
|
||||||
|
file_source: Source of the text (optional)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
text: str = Field(
|
text: str = Field(
|
||||||
min_length=1,
|
min_length=1,
|
||||||
description="The text to insert",
|
description="The text to insert",
|
||||||
)
|
)
|
||||||
|
file_source: str = Field(default=None, min_length=0, description="File Source")
|
||||||
|
|
||||||
@field_validator("text", mode="after")
|
@field_validator("text", mode="after")
|
||||||
@classmethod
|
@classmethod
|
||||||
def strip_after(cls, text: str) -> str:
|
def strip_text_after(cls, text: str) -> str:
|
||||||
return text.strip()
|
return text.strip()
|
||||||
|
|
||||||
|
@field_validator("file_source", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def strip_source_after(cls, file_source: str) -> str:
|
||||||
|
return file_source.strip()
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
json_schema_extra = {
|
json_schema_extra = {
|
||||||
"example": {
|
"example": {
|
||||||
"text": "This is a sample text to be inserted into the RAG system."
|
"text": "This is a sample text to be inserted into the RAG system.",
|
||||||
|
"file_source": "Source of the text (optional)",
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -109,25 +117,37 @@ class InsertTextsRequest(BaseModel):
|
|||||||
|
|
||||||
Attributes:
|
Attributes:
|
||||||
texts: List of text contents to be inserted into the RAG system
|
texts: List of text contents to be inserted into the RAG system
|
||||||
|
file_sources: Sources of the texts (optional)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
texts: list[str] = Field(
|
texts: list[str] = Field(
|
||||||
min_length=1,
|
min_length=1,
|
||||||
description="The texts to insert",
|
description="The texts to insert",
|
||||||
)
|
)
|
||||||
|
file_sources: list[str] = Field(
|
||||||
|
default=None, min_length=0, description="Sources of the texts"
|
||||||
|
)
|
||||||
|
|
||||||
@field_validator("texts", mode="after")
|
@field_validator("texts", mode="after")
|
||||||
@classmethod
|
@classmethod
|
||||||
def strip_after(cls, texts: list[str]) -> list[str]:
|
def strip_texts_after(cls, texts: list[str]) -> list[str]:
|
||||||
return [text.strip() for text in texts]
|
return [text.strip() for text in texts]
|
||||||
|
|
||||||
|
@field_validator("file_sources", mode="after")
|
||||||
|
@classmethod
|
||||||
|
def strip_sources_after(cls, file_sources: list[str]) -> list[str]:
|
||||||
|
return [file_source.strip() for file_source in file_sources]
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
json_schema_extra = {
|
json_schema_extra = {
|
||||||
"example": {
|
"example": {
|
||||||
"texts": [
|
"texts": [
|
||||||
"This is the first text to be inserted.",
|
"This is the first text to be inserted.",
|
||||||
"This is the second text to be inserted.",
|
"This is the second text to be inserted.",
|
||||||
]
|
],
|
||||||
|
"file_sources": [
|
||||||
|
"First file source (optional)",
|
||||||
|
],
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -656,16 +676,25 @@ async def pipeline_index_files(rag: LightRAG, file_paths: List[Path]):
|
|||||||
logger.error(traceback.format_exc())
|
logger.error(traceback.format_exc())
|
||||||
|
|
||||||
|
|
||||||
async def pipeline_index_texts(rag: LightRAG, texts: List[str]):
|
async def pipeline_index_texts(
|
||||||
|
rag: LightRAG, texts: List[str], file_sources: List[str] = None
|
||||||
|
):
|
||||||
"""Index a list of texts
|
"""Index a list of texts
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
rag: LightRAG instance
|
rag: LightRAG instance
|
||||||
texts: The texts to index
|
texts: The texts to index
|
||||||
|
file_sources: Sources of the texts
|
||||||
"""
|
"""
|
||||||
if not texts:
|
if not texts:
|
||||||
return
|
return
|
||||||
await rag.apipeline_enqueue_documents(texts)
|
if file_sources is not None:
|
||||||
|
if len(file_sources) != 0 and len(file_sources) != len(texts):
|
||||||
|
[
|
||||||
|
file_sources.append("unknown_source")
|
||||||
|
for _ in range(len(file_sources), len(texts))
|
||||||
|
]
|
||||||
|
await rag.apipeline_enqueue_documents(input=texts, file_paths=file_sources)
|
||||||
await rag.apipeline_process_enqueue_documents()
|
await rag.apipeline_process_enqueue_documents()
|
||||||
|
|
||||||
|
|
||||||
@@ -816,7 +845,12 @@ def create_document_routes(
|
|||||||
HTTPException: If an error occurs during text processing (500).
|
HTTPException: If an error occurs during text processing (500).
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
background_tasks.add_task(pipeline_index_texts, rag, [request.text])
|
background_tasks.add_task(
|
||||||
|
pipeline_index_texts,
|
||||||
|
rag,
|
||||||
|
[request.text],
|
||||||
|
file_sources=[request.file_source],
|
||||||
|
)
|
||||||
return InsertResponse(
|
return InsertResponse(
|
||||||
status="success",
|
status="success",
|
||||||
message="Text successfully received. Processing will continue in background.",
|
message="Text successfully received. Processing will continue in background.",
|
||||||
@@ -851,7 +885,12 @@ def create_document_routes(
|
|||||||
HTTPException: If an error occurs during text processing (500).
|
HTTPException: If an error occurs during text processing (500).
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
background_tasks.add_task(pipeline_index_texts, rag, request.texts)
|
background_tasks.add_task(
|
||||||
|
pipeline_index_texts,
|
||||||
|
rag,
|
||||||
|
request.texts,
|
||||||
|
file_sources=request.file_sources,
|
||||||
|
)
|
||||||
return InsertResponse(
|
return InsertResponse(
|
||||||
status="success",
|
status="success",
|
||||||
message="Text successfully received. Processing will continue in background.",
|
message="Text successfully received. Processing will continue in background.",
|
||||||
|
@@ -78,6 +78,10 @@ class QueryRequest(BaseModel):
|
|||||||
description="Number of complete conversation turns (user-assistant pairs) to consider in the response context.",
|
description="Number of complete conversation turns (user-assistant pairs) to consider in the response context.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
ids: list[str] | None = Field(
|
||||||
|
default=None, description="List of ids to filter the results."
|
||||||
|
)
|
||||||
|
|
||||||
user_prompt: Optional[str] = Field(
|
user_prompt: Optional[str] = Field(
|
||||||
default=None,
|
default=None,
|
||||||
description="User-provided prompt for the query. If provided, this will be used instead of the default value from prompt template.",
|
description="User-provided prompt for the query. If provided, this will be used instead of the default value from prompt template.",
|
||||||
|
@@ -95,7 +95,7 @@ async def llama_index_complete_if_cache(
|
|||||||
prompt: str,
|
prompt: str,
|
||||||
system_prompt: Optional[str] = None,
|
system_prompt: Optional[str] = None,
|
||||||
history_messages: List[dict] = [],
|
history_messages: List[dict] = [],
|
||||||
**kwargs,
|
chat_kwargs={},
|
||||||
) -> str:
|
) -> str:
|
||||||
"""Complete the prompt using LlamaIndex."""
|
"""Complete the prompt using LlamaIndex."""
|
||||||
try:
|
try:
|
||||||
@@ -122,13 +122,9 @@ async def llama_index_complete_if_cache(
|
|||||||
# Add current prompt
|
# Add current prompt
|
||||||
formatted_messages.append(ChatMessage(role=MessageRole.USER, content=prompt))
|
formatted_messages.append(ChatMessage(role=MessageRole.USER, content=prompt))
|
||||||
|
|
||||||
# Get LLM instance from kwargs
|
response: ChatResponse = await model.achat(
|
||||||
if "llm_instance" not in kwargs:
|
messages=formatted_messages, **chat_kwargs
|
||||||
raise ValueError("llm_instance must be provided in kwargs")
|
)
|
||||||
llm = kwargs["llm_instance"]
|
|
||||||
|
|
||||||
# Get response
|
|
||||||
response: ChatResponse = await llm.achat(messages=formatted_messages)
|
|
||||||
|
|
||||||
# In newer versions, the response is in message.content
|
# In newer versions, the response is in message.content
|
||||||
content = response.message.content
|
content = response.message.content
|
||||||
|
Reference in New Issue
Block a user