Files
lightrag/README.md
2024-10-10 11:54:36 +08:00

199 lines
10 KiB
Markdown

# LightRAG: Simple and Fast Retrieval-Augmented Generation
![请添加图片描述](https://i-blog.csdnimg.cn/direct/567139f1a36e4564abc63ce5c12b6271.jpeg)
<a href='https://github.com/HKUDS/LightRAG'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
This repository hosts the code of LightRAG. The structure of this code is based on [nano-graphrag](https://github.com/gusye1234/nano-graphrag).
![请添加图片描述](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)
## Install
* Install from source
```bash
cd LightRAG
pip install -e .
```
* Install from PyPI
```bash
pip install lightrag-hku
```
## Quick Start
* Set OpenAI API key in environment: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens"
```bash
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
```
Use the below python snippet:
```python
from lightrag import LightRAG, QueryParam
rag = LightRAG(working_dir="./dickens")
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybird search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybird")))
```
Batch Insert
```python
rag.insert(["TEXT1", "TEXT2",...])
```
Incremental Insert
```python
rag = LightRAG(working_dir="./dickens")
with open("./newText.txt") as f:
rag.insert(f.read())
```
## Evaluation
### Dataset
The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
### Generate Query
LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`.
```python
Given the following description of a dataset:
{description}
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
Output the results in the following structure:
- User 1: [user description]
- Task 1: [task description]
- Question 1:
- Question 2:
- Question 3:
- Question 4:
- Question 5:
- Task 2: [task description]
...
- Task 5: [task description]
- User 2: [user description]
...
- User 5: [user description]
...
```
### Batch Eval
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
Here is the question:
{query}
Here are the two answers:
**Answer 1:**
{answer1}
**Answer 2:**
{answer2}
Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
Output your evaluation in the following JSON format:
{{
"Comprehensiveness": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Empowerment": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Overall Winner": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
}}
}}
```
### Overall Performance Table
### Overall Performance Table
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
| **Comprehensiveness** | 32.69% | **67.31%** | 35.44% | **64.56%** | 19.05% | **80.95%** | 36.36% | **63.64%** |
| **Diversity** | 24.09% | **75.91%** | 35.24% | **64.76%** | 10.98% | **89.02%** | 30.76% | **69.24%** |
| **Empowerment** | 31.35% | **68.65%** | 35.48% | **64.52%** | 17.59% | **82.41%** | 40.95% | **59.05%** |
| **Overall** | 33.30% | **66.70%** | 34.76% | **65.24%** | 17.46% | **82.54%** | 37.59% | **62.40%** |
| | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** |
| **Comprehensiveness** | 32.05% | **67.95%** | 39.30% | **60.70%** | 18.57% | **81.43%** | 38.89% | **61.11%** |
| **Diversity** | 29.44% | **70.56%** | 38.71% | **61.29%** | 15.14% | **84.86%** | 28.50% | **71.50%** |
| **Empowerment** | 32.51% | **67.49%** | 37.52% | **62.48%** | 17.80% | **82.20%** | 43.96% | **56.04%** |
| **Overall** | 33.29% | **66.71%** | 39.03% | **60.97%** | 17.80% | **82.20%** | 39.61% | **60.39%** |
| | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** |
| **Comprehensiveness** | 24.39% | **75.61%** | 36.49% | **63.51%** | 27.68% | **72.32%** | 42.17% | **57.83%** |
| **Diversity** | 24.96% | **75.34%** | 37.41% | **62.59%** | 18.79% | **81.21%** | 30.88% | **69.12%** |
| **Empowerment** | 24.89% | **75.11%** | 34.99% | **65.01%** | 26.99% | **73.01%** | **45.61%** | **54.39%** |
| **Overall** | 23.17% | **76.83%** | 35.67% | **64.33%** | 27.68% | **72.32%** | 42.72% | **57.28%** |
| | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** |
| **Comprehensiveness** | 45.56% | **54.44%** | 45.98% | **54.02%** | 47.13% | **52.87%** | **51.86%** | 48.14% |
| **Diversity** | 19.65% | **80.35%** | 39.64% | **60.36%** | 25.55% | **74.45%** | 35.87% | **64.13%** |
| **Empowerment** | 36.69% | **63.31%** | 45.09% | **54.91%** | 42.81% | **57.19%** | **52.94%** | 47.06% |
| **Overall** | 43.62% | **56.38%** | 45.98% | **54.02%** | 45.70% | **54.30%** | **51.86%** | 48.14% |
## Code Structure
```python
.
├── examples
├── batch_eval.py
├── generate_query.py
├── insert.py
└── query.py
├── lightrag
├── __init__.py
├── base.py
├── lightrag.py
├── llm.py
├── operate.py
├── prompt.py
├── storage.py
└── utils.jpeg
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
```
## Citation
```
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```