fix linting

This commit is contained in:
zrguo
2025-03-04 15:53:20 +08:00
parent 3a2a636862
commit 81568f3bad
11 changed files with 394 additions and 327 deletions

View File

@@ -619,7 +619,7 @@ class AGEStorage(BaseGraphStorage):
node_id: The label of the node to delete
"""
entity_name_label = node_id.strip('"')
query = """
MATCH (n:`{label}`)
DETACH DELETE n
@@ -650,18 +650,20 @@ class AGEStorage(BaseGraphStorage):
for source, target in edges:
entity_name_label_source = source.strip('"')
entity_name_label_target = target.strip('"')
query = """
MATCH (source:`{src_label}`)-[r]->(target:`{tgt_label}`)
DELETE r
"""
params = {
"src_label": AGEStorage._encode_graph_label(entity_name_label_source),
"tgt_label": AGEStorage._encode_graph_label(entity_name_label_target)
"tgt_label": AGEStorage._encode_graph_label(entity_name_label_target),
}
try:
await self._query(query, **params)
logger.debug(f"Deleted edge from '{entity_name_label_source}' to '{entity_name_label_target}'")
logger.debug(
f"Deleted edge from '{entity_name_label_source}' to '{entity_name_label_target}'"
)
except Exception as e:
logger.error(f"Error during edge deletion: {str(e)}")
raise
@@ -683,7 +685,7 @@ class AGEStorage(BaseGraphStorage):
async def get_all_labels(self) -> list[str]:
"""Get all node labels in the database
Returns:
["label1", "label2", ...] # Alphabetically sorted label list
"""
@@ -692,7 +694,7 @@ class AGEStorage(BaseGraphStorage):
RETURN DISTINCT labels(n) AS node_labels
"""
results = await self._query(query)
all_labels = []
for record in results:
if record and "node_labels" in record:
@@ -701,7 +703,7 @@ class AGEStorage(BaseGraphStorage):
# Decode label
decoded_label = AGEStorage._decode_graph_label(label)
all_labels.append(decoded_label)
# Remove duplicates and sort
return sorted(list(set(all_labels)))
@@ -719,7 +721,7 @@ class AGEStorage(BaseGraphStorage):
Args:
node_label: String to match in node labels (will match any node containing this string in its label)
max_depth: Maximum depth of the graph. Defaults to 5.
Returns:
KnowledgeGraph: Complete connected subgraph for specified node
"""
@@ -727,7 +729,7 @@ class AGEStorage(BaseGraphStorage):
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
# Handle special case for "*" label
if node_label == "*":
# Query all nodes and sort by degree
@@ -741,7 +743,7 @@ class AGEStorage(BaseGraphStorage):
"""
params = {"max_nodes": max_graph_nodes}
nodes_result = await self._query(query, **params)
# Add nodes to result
node_ids = []
for record in nodes_result:
@@ -755,12 +757,12 @@ class AGEStorage(BaseGraphStorage):
KnowledgeGraphNode(
id=node_id,
labels=[node_label],
properties=node_properties
properties=node_properties,
)
)
seen_nodes.add(node_id)
node_ids.append(node_id)
# Query edges between these nodes
if node_ids:
edges_query = """
@@ -770,7 +772,7 @@ class AGEStorage(BaseGraphStorage):
"""
edges_params = {"node_ids": node_ids}
edges_result = await self._query(edges_query, **edges_params)
# Add edges to result
for record in edges_result:
if "r" in record and "a" in record and "b" in record:
@@ -785,7 +787,7 @@ class AGEStorage(BaseGraphStorage):
type="DIRECTED",
source=source,
target=target,
properties=edge_properties
properties=edge_properties,
)
)
seen_edges.add(edge_id)
@@ -793,7 +795,7 @@ class AGEStorage(BaseGraphStorage):
# For specific label, use partial matching
entity_name_label = node_label.strip('"')
encoded_label = AGEStorage._encode_graph_label(entity_name_label)
# Find matching start nodes
start_query = """
MATCH (n:`{label}`)
@@ -801,17 +803,14 @@ class AGEStorage(BaseGraphStorage):
"""
start_params = {"label": encoded_label}
start_nodes = await self._query(start_query, **start_params)
if not start_nodes:
logger.warning(f"No nodes found with label '{entity_name_label}'!")
return result
# Traverse graph from each start node
for start_node_record in start_nodes:
if "n" in start_node_record:
start_node = start_node_record["n"]
start_id = str(start_node.get("id", ""))
# Use BFS to traverse graph
query = """
MATCH (start:`{label}`)
@@ -823,25 +822,28 @@ class AGEStorage(BaseGraphStorage):
"""
params = {"label": encoded_label, "max_depth": max_depth}
results = await self._query(query, **params)
# Extract nodes and edges from results
for record in results:
if "path_nodes" in record:
# Process nodes
for node in record["path_nodes"]:
node_id = str(node.get("id", ""))
if node_id not in seen_nodes and len(seen_nodes) < max_graph_nodes:
if (
node_id not in seen_nodes
and len(seen_nodes) < max_graph_nodes
):
node_properties = {k: v for k, v in node.items()}
node_label = node.get("label", "")
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[node_label],
properties=node_properties
properties=node_properties,
)
)
seen_nodes.add(node_id)
if "path_rels" in record:
# Process edges
for rel in record["path_rels"]:
@@ -856,11 +858,11 @@ class AGEStorage(BaseGraphStorage):
type=rel.get("label", "DIRECTED"),
source=source,
target=target,
properties=edge_properties
properties=edge_properties,
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)

View File

@@ -194,7 +194,7 @@ class ChromaVectorDBStorage(BaseVectorStorage):
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by its ID.
Args:
entity_name: The ID of the entity to delete
"""
@@ -206,24 +206,26 @@ class ChromaVectorDBStorage(BaseVectorStorage):
raise
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete an entity and its relations by ID.
"""Delete an entity and its relations by ID.
In vector DB context, this is equivalent to delete_entity.
Args:
entity_name: The ID of the entity to delete
"""
await self.delete_entity(entity_name)
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
try:
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
self._collection.delete(ids=ids)
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
logger.debug(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
raise

View File

@@ -397,12 +397,12 @@ class GremlinStorage(BaseGraphStorage):
async def delete_node(self, node_id: str) -> None:
"""Delete a node with the specified entity_name
Args:
node_id: The entity_name of the node to delete
"""
entity_name = GremlinStorage._fix_name(node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name})
@@ -413,7 +413,7 @@ class GremlinStorage(BaseGraphStorage):
logger.debug(
"{%s}: Deleted node with entity_name '%s'",
inspect.currentframe().f_code.co_name,
entity_name
entity_name,
)
except Exception as e:
logger.error(f"Error during node deletion: {str(e)}")
@@ -425,13 +425,13 @@ class GremlinStorage(BaseGraphStorage):
"""
Embed nodes using the specified algorithm.
Currently, only node2vec is supported but never called.
Args:
algorithm: The name of the embedding algorithm to use
Returns:
A tuple of (embeddings, node_ids)
Raises:
NotImplementedError: If the specified algorithm is not supported
ValueError: If the algorithm is not supported
@@ -458,7 +458,7 @@ class GremlinStorage(BaseGraphStorage):
logger.debug(
"{%s}: Retrieved %d labels",
inspect.currentframe().f_code.co_name,
len(labels)
len(labels),
)
return labels
except Exception as e:
@@ -471,7 +471,7 @@ class GremlinStorage(BaseGraphStorage):
"""
Retrieve a connected subgraph of nodes where the entity_name includes the specified `node_label`.
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
Args:
node_label: Entity name of the starting node
max_depth: Maximum depth of the subgraph
@@ -482,12 +482,12 @@ class GremlinStorage(BaseGraphStorage):
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
# Get maximum number of graph nodes from environment variable, default is 1000
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
entity_name = GremlinStorage._fix_name(node_label)
# Handle special case for "*" label
if node_label == "*":
# For "*", get all nodes and their edges (limited by MAX_GRAPH_NODES)
@@ -497,25 +497,27 @@ class GremlinStorage(BaseGraphStorage):
.elementMap()
"""
nodes_result = await self._query(query)
# Add nodes to result
for node_data in nodes_result:
node_id = node_data.get('entity_name', str(node_data.get('id', '')))
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
if str(node_id) in seen_nodes:
continue
# Create node with properties
node_properties = {k: v for k, v in node_data.items() if k not in ['id', 'label']}
node_properties = {
k: v for k, v in node_data.items() if k not in ["id", "label"]
}
result.nodes.append(
KnowledgeGraphNode(
id=str(node_id),
labels=[str(node_id)],
properties=node_properties
labels=[str(node_id)],
properties=node_properties,
)
)
seen_nodes.add(str(node_id))
# Get and add edges
if nodes_result:
query = f"""g
@@ -530,30 +532,34 @@ class GremlinStorage(BaseGraphStorage):
.by(elementMap())
"""
edges_result = await self._query(query)
for path in edges_result:
if len(path) >= 3: # source -> edge -> target
source = path[0]
edge_data = path[1]
target = path[2]
source_id = source.get('entity_name', str(source.get('id', '')))
target_id = target.get('entity_name', str(target.get('id', '')))
source_id = source.get("entity_name", str(source.get("id", "")))
target_id = target.get("entity_name", str(target.get("id", "")))
edge_id = f"{source_id}-{target_id}"
if edge_id in seen_edges:
continue
# Create edge with properties
edge_properties = {k: v for k, v in edge_data.items() if k not in ['id', 'label']}
edge_properties = {
k: v
for k, v in edge_data.items()
if k not in ["id", "label"]
}
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source_id),
target=str(target_id),
properties=edge_properties
properties=edge_properties,
)
)
seen_edges.add(edge_id)
@@ -570,30 +576,36 @@ class GremlinStorage(BaseGraphStorage):
.elementMap()
"""
nodes_result = await self._query(query)
# Add nodes to result
for node_data in nodes_result:
node_id = node_data.get('entity_name', str(node_data.get('id', '')))
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
if str(node_id) in seen_nodes:
continue
# Create node with properties
node_properties = {k: v for k, v in node_data.items() if k not in ['id', 'label']}
node_properties = {
k: v for k, v in node_data.items() if k not in ["id", "label"]
}
result.nodes.append(
KnowledgeGraphNode(
id=str(node_id),
labels=[str(node_id)],
properties=node_properties
labels=[str(node_id)],
properties=node_properties,
)
)
seen_nodes.add(str(node_id))
# Get edges between the nodes in the result
if nodes_result:
node_ids = [n.get('entity_name', str(n.get('id', ''))) for n in nodes_result]
node_ids_query = ", ".join([GremlinStorage._to_value_map(nid) for nid in node_ids])
node_ids = [
n.get("entity_name", str(n.get("id", ""))) for n in nodes_result
]
node_ids_query = ", ".join(
[GremlinStorage._to_value_map(nid) for nid in node_ids]
)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', within({node_ids_query}))
@@ -606,38 +618,42 @@ class GremlinStorage(BaseGraphStorage):
.by(elementMap())
"""
edges_result = await self._query(query)
for path in edges_result:
if len(path) >= 3: # source -> edge -> target
source = path[0]
edge_data = path[1]
target = path[2]
source_id = source.get('entity_name', str(source.get('id', '')))
target_id = target.get('entity_name', str(target.get('id', '')))
source_id = source.get("entity_name", str(source.get("id", "")))
target_id = target.get("entity_name", str(target.get("id", "")))
edge_id = f"{source_id}-{target_id}"
if edge_id in seen_edges:
continue
# Create edge with properties
edge_properties = {k: v for k, v in edge_data.items() if k not in ['id', 'label']}
edge_properties = {
k: v
for k, v in edge_data.items()
if k not in ["id", "label"]
}
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source_id),
target=str(target_id),
properties=edge_properties
properties=edge_properties,
)
)
seen_edges.add(edge_id)
logger.info(
"Subgraph query successful | Node count: %d | Edge count: %d",
len(result.nodes),
len(result.edges)
len(result.edges),
)
return result
@@ -659,7 +675,7 @@ class GremlinStorage(BaseGraphStorage):
for source, target in edges:
entity_name_source = GremlinStorage._fix_name(source)
entity_name_target = GremlinStorage._fix_name(target)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name_source})
@@ -674,7 +690,7 @@ class GremlinStorage(BaseGraphStorage):
"{%s}: Deleted edge from '%s' to '%s'",
inspect.currentframe().f_code.co_name,
entity_name_source,
entity_name_target
entity_name_target,
)
except Exception as e:
logger.error(f"Error during edge deletion: {str(e)}")

View File

@@ -125,83 +125,84 @@ class MilvusVectorDBStorage(BaseVectorStorage):
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity from the vector database
Args:
entity_name: The name of the entity to delete
"""
try:
# Compute entity ID from name
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
# Delete the entity from Milvus collection
result = self._client.delete(
collection_name=self.namespace,
pks=[entity_id]
collection_name=self.namespace, pks=[entity_id]
)
if result and result.get("delete_count", 0) > 0:
logger.debug(f"Successfully deleted entity {entity_name}")
else:
logger.debug(f"Entity {entity_name} not found in storage")
except Exception as e:
logger.error(f"Error deleting entity {entity_name}: {e}")
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: The name of the entity whose relations should be deleted
"""
try:
# Search for relations where entity is either source or target
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"'
# Find all relations involving this entity
results = self._client.query(
collection_name=self.namespace,
filter=expr,
output_fields=["id"]
collection_name=self.namespace, filter=expr, output_fields=["id"]
)
if not results or len(results) == 0:
logger.debug(f"No relations found for entity {entity_name}")
return
# Extract IDs of relations to delete
relation_ids = [item["id"] for item in results]
logger.debug(f"Found {len(relation_ids)} relations for entity {entity_name}")
logger.debug(
f"Found {len(relation_ids)} relations for entity {entity_name}"
)
# Delete the relations
if relation_ids:
delete_result = self._client.delete(
collection_name=self.namespace,
pks=relation_ids
collection_name=self.namespace, pks=relation_ids
)
logger.debug(f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}")
logger.debug(
f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}"
)
except Exception as e:
logger.error(f"Error deleting relations for {entity_name}: {e}")
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
try:
# Delete vectors by IDs
result = self._client.delete(
collection_name=self.namespace,
pks=ids
)
result = self._client.delete(collection_name=self.namespace, pks=ids)
if result and result.get("delete_count", 0) > 0:
logger.debug(f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}")
logger.debug(
f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}"
)
else:
logger.debug(f"No vectors were deleted from {self.namespace}")
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")

View File

@@ -804,16 +804,15 @@ class MongoGraphStorage(BaseGraphStorage):
logger.info(f"Deleting {len(nodes)} nodes")
if not nodes:
return
# 1. Remove all edges referencing these nodes (remove from edges array of other nodes)
await self.collection.update_many(
{},
{"$pull": {"edges": {"target": {"$in": nodes}}}}
{}, {"$pull": {"edges": {"target": {"$in": nodes}}}}
)
# 2. Delete the node documents
await self.collection.delete_many({"_id": {"$in": nodes}})
logger.debug(f"Successfully deleted nodes: {nodes}")
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
@@ -825,20 +824,19 @@ class MongoGraphStorage(BaseGraphStorage):
logger.info(f"Deleting {len(edges)} edges")
if not edges:
return
update_tasks = []
for source, target in edges:
# Remove edge pointing to target from source node's edges array
update_tasks.append(
self.collection.update_one(
{"_id": source},
{"$pull": {"edges": {"target": target}}}
{"_id": source}, {"$pull": {"edges": {"target": target}}}
)
)
if update_tasks:
await asyncio.gather(*update_tasks)
logger.debug(f"Successfully deleted edges: {edges}")
@@ -987,23 +985,29 @@ class MongoVectorDBStorage(BaseVectorStorage):
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
if not ids:
return
try:
result = await self._data.delete_many({"_id": {"$in": ids}})
logger.debug(f"Successfully deleted {result.deleted_count} vectors from {self.namespace}")
logger.debug(
f"Successfully deleted {result.deleted_count} vectors from {self.namespace}"
)
except PyMongoError as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {str(e)}")
logger.error(
f"Error while deleting vectors from {self.namespace}: {str(e)}"
)
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by its name
Args:
entity_name: Name of the entity to delete
"""
try:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
result = await self._data.delete_one({"_id": entity_id})
if result.deleted_count > 0:
logger.debug(f"Successfully deleted entity {entity_name}")
@@ -1014,7 +1018,7 @@ class MongoVectorDBStorage(BaseVectorStorage):
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: Name of the entity whose relations should be deleted
"""
@@ -1024,15 +1028,17 @@ class MongoVectorDBStorage(BaseVectorStorage):
{"$or": [{"src_id": entity_name}, {"tgt_id": entity_name}]}
)
relations = await relations_cursor.to_list(length=None)
if not relations:
logger.debug(f"No relations found for entity {entity_name}")
return
# Extract IDs of relations to delete
relation_ids = [relation["_id"] for relation in relations]
logger.debug(f"Found {len(relation_ids)} relations for entity {entity_name}")
logger.debug(
f"Found {len(relation_ids)} relations for entity {entity_name}"
)
# Delete the relations
result = await self._data.delete_many({"_id": {"$in": relation_ids}})
logger.debug(f"Deleted {result.deleted_count} relations for {entity_name}")

View File

@@ -444,27 +444,29 @@ class OracleVectorDBStorage(BaseVectorStorage):
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
if not ids:
return
try:
SQL = SQL_TEMPLATES["delete_vectors"].format(
ids=",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
await self.db.execute(SQL, params)
logger.info(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
logger.info(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
raise
async def delete_entity(self, entity_name: str) -> None:
"""Delete entity by name
Args:
entity_name: Name of the entity to delete
"""
@@ -479,7 +481,7 @@ class OracleVectorDBStorage(BaseVectorStorage):
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations connected to an entity
Args:
entity_name: Name of the entity whose relations should be deleted
"""
@@ -713,7 +715,7 @@ class OracleGraphStorage(BaseGraphStorage):
async def delete_node(self, node_id: str) -> None:
"""Delete a node from the graph
Args:
node_id: ID of the node to delete
"""
@@ -722,33 +724,35 @@ class OracleGraphStorage(BaseGraphStorage):
delete_relations_sql = SQL_TEMPLATES["delete_entity_relations"]
params_relations = {"workspace": self.db.workspace, "entity_name": node_id}
await self.db.execute(delete_relations_sql, params_relations)
# Then delete the node itself
delete_node_sql = SQL_TEMPLATES["delete_entity"]
params_node = {"workspace": self.db.workspace, "entity_name": node_id}
await self.db.execute(delete_node_sql, params_node)
logger.info(f"Successfully deleted node {node_id} and all its relationships")
logger.info(
f"Successfully deleted node {node_id} and all its relationships"
)
except Exception as e:
logger.error(f"Error deleting node {node_id}: {e}")
raise
async def get_all_labels(self) -> list[str]:
"""Get all unique entity types (labels) in the graph
Returns:
List of unique entity types/labels
"""
try:
SQL = """
SELECT DISTINCT entity_type
FROM LIGHTRAG_GRAPH_NODES
WHERE workspace = :workspace
SELECT DISTINCT entity_type
FROM LIGHTRAG_GRAPH_NODES
WHERE workspace = :workspace
ORDER BY entity_type
"""
params = {"workspace": self.db.workspace}
results = await self.db.query(SQL, params, multirows=True)
if results:
labels = [row["entity_type"] for row in results]
return labels
@@ -762,26 +766,26 @@ class OracleGraphStorage(BaseGraphStorage):
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""Retrieve a connected subgraph starting from nodes matching the given label
Maximum number of nodes is constrained by MAX_GRAPH_NODES environment variable.
Prioritizes nodes by:
1. Nodes matching the specified label
2. Nodes directly connected to matching nodes
3. Node degree (number of connections)
Args:
node_label: Label to match for starting nodes (use "*" for all nodes)
max_depth: Maximum depth of traversal from starting nodes
Returns:
KnowledgeGraph object containing nodes and edges
"""
result = KnowledgeGraph()
try:
# Define maximum number of nodes to return
max_graph_nodes = int(os.environ.get("MAX_GRAPH_NODES", 1000))
if node_label == "*":
# For "*" label, get all nodes up to the limit
nodes_sql = """
@@ -791,30 +795,33 @@ class OracleGraphStorage(BaseGraphStorage):
ORDER BY id
FETCH FIRST :limit ROWS ONLY
"""
nodes_params = {"workspace": self.db.workspace, "limit": max_graph_nodes}
nodes_params = {
"workspace": self.db.workspace,
"limit": max_graph_nodes,
}
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
else:
# For specific label, find matching nodes and related nodes
nodes_sql = """
WITH matching_nodes AS (
SELECT name
SELECT name
FROM LIGHTRAG_GRAPH_NODES
WHERE workspace = :workspace
WHERE workspace = :workspace
AND (name LIKE '%' || :node_label || '%' OR entity_type LIKE '%' || :node_label || '%')
)
SELECT n.name, n.entity_type, n.description, n.source_chunk_id,
CASE
WHEN n.name IN (SELECT name FROM matching_nodes) THEN 2
WHEN EXISTS (
SELECT 1 FROM LIGHTRAG_GRAPH_EDGES e
SELECT 1 FROM LIGHTRAG_GRAPH_EDGES e
WHERE workspace = :workspace
AND ((e.source_name = n.name AND e.target_name IN (SELECT name FROM matching_nodes))
OR (e.target_name = n.name AND e.source_name IN (SELECT name FROM matching_nodes)))
) THEN 1
ELSE 0
END AS priority,
(SELECT COUNT(*) FROM LIGHTRAG_GRAPH_EDGES e
WHERE workspace = :workspace
(SELECT COUNT(*) FROM LIGHTRAG_GRAPH_EDGES e
WHERE workspace = :workspace
AND (e.source_name = n.name OR e.target_name = n.name)) AS degree
FROM LIGHTRAG_GRAPH_NODES n
WHERE workspace = :workspace
@@ -822,43 +829,41 @@ class OracleGraphStorage(BaseGraphStorage):
FETCH FIRST :limit ROWS ONLY
"""
nodes_params = {
"workspace": self.db.workspace,
"workspace": self.db.workspace,
"node_label": node_label,
"limit": max_graph_nodes
"limit": max_graph_nodes,
}
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
if not nodes:
logger.warning(f"No nodes found matching '{node_label}'")
return result
# Create mapping of node IDs to be used to filter edges
node_names = [node["name"] for node in nodes]
# Add nodes to result
seen_nodes = set()
for node in nodes:
node_id = node["name"]
if node_id in seen_nodes:
continue
# Create node properties dictionary
properties = {
"entity_type": node["entity_type"],
"description": node["description"] or "",
"source_id": node["source_chunk_id"] or ""
"source_id": node["source_chunk_id"] or "",
}
# Add node to result
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[node["entity_type"]],
properties=properties
id=node_id, labels=[node["entity_type"]], properties=properties
)
)
seen_nodes.add(node_id)
# Get edges between these nodes
edges_sql = """
SELECT source_name, target_name, weight, keywords, description, source_chunk_id
@@ -868,30 +873,27 @@ class OracleGraphStorage(BaseGraphStorage):
AND target_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
ORDER BY id
"""
edges_params = {
"workspace": self.db.workspace,
"node_names": node_names
}
edges_params = {"workspace": self.db.workspace, "node_names": node_names}
edges = await self.db.query(edges_sql, edges_params, multirows=True)
# Add edges to result
seen_edges = set()
for edge in edges:
source = edge["source_name"]
target = edge["target_name"]
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
# Create edge properties dictionary
properties = {
"weight": edge["weight"] or 0.0,
"keywords": edge["keywords"] or "",
"description": edge["description"] or "",
"source_id": edge["source_chunk_id"] or ""
"source_id": edge["source_chunk_id"] or "",
}
# Add edge to result
result.edges.append(
KnowledgeGraphEdge(
@@ -899,18 +901,18 @@ class OracleGraphStorage(BaseGraphStorage):
type="RELATED",
source=source,
target=target,
properties=properties
properties=properties,
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except Exception as e:
logger.error(f"Error retrieving knowledge graph: {e}")
return result
@@ -1166,8 +1168,8 @@ SQL_TEMPLATES = {
"delete_vectors": "DELETE FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace AND id IN ({ids})",
"delete_entity": "DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace AND name=:entity_name",
"delete_entity_relations": "DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace AND (source_name=:entity_name OR target_name=:entity_name)",
"delete_node": """DELETE FROM GRAPH_TABLE (lightrag_graph
MATCH (a)
WHERE a.workspace=:workspace AND a.name=:node_id
"delete_node": """DELETE FROM GRAPH_TABLE (lightrag_graph
MATCH (a)
WHERE a.workspace=:workspace AND a.name=:node_id
ACTION DELETE a)""",
}

View File

@@ -527,11 +527,15 @@ class PGVectorStorage(BaseVectorStorage):
return
ids_list = ",".join([f"'{id}'" for id in ids])
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id IN ({ids_list})"
delete_sql = (
f"DELETE FROM {table_name} WHERE workspace=$1 AND id IN ({ids_list})"
)
try:
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
logger.debug(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
@@ -543,12 +547,11 @@ class PGVectorStorage(BaseVectorStorage):
"""
try:
# Construct SQL to delete the entity
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
WHERE workspace=$1 AND entity_name=$2"""
await self.db.execute(
delete_sql,
{"workspace": self.db.workspace, "entity_name": entity_name}
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
)
logger.debug(f"Successfully deleted entity {entity_name}")
except Exception as e:
@@ -562,12 +565,11 @@ class PGVectorStorage(BaseVectorStorage):
"""
try:
# Delete relations where the entity is either the source or target
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
WHERE workspace=$1 AND (source_id=$2 OR target_id=$2)"""
await self.db.execute(
delete_sql,
{"workspace": self.db.workspace, "entity_name": entity_name}
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
)
logger.debug(f"Successfully deleted relations for entity {entity_name}")
except Exception as e:
@@ -1167,7 +1169,9 @@ class PGGraphStorage(BaseGraphStorage):
Args:
node_ids (list[str]): A list of node IDs to remove.
"""
encoded_node_ids = [self._encode_graph_label(node_id.strip('"')) for node_id in node_ids]
encoded_node_ids = [
self._encode_graph_label(node_id.strip('"')) for node_id in node_ids
]
node_id_list = ", ".join([f'"{node_id}"' for node_id in encoded_node_ids])
query = """SELECT * FROM cypher('%s', $$
@@ -1189,7 +1193,13 @@ class PGGraphStorage(BaseGraphStorage):
Args:
edges (list[tuple[str, str]]): A list of edges to remove, where each edge is a tuple of (source_node_id, target_node_id).
"""
encoded_edges = [(self._encode_graph_label(src.strip('"')), self._encode_graph_label(tgt.strip('"'))) for src, tgt in edges]
encoded_edges = [
(
self._encode_graph_label(src.strip('"')),
self._encode_graph_label(tgt.strip('"')),
)
for src, tgt in edges
]
edge_list = ", ".join([f'["{src}", "{tgt}"]' for src, tgt in encoded_edges])
query = """SELECT * FROM cypher('%s', $$
@@ -1211,10 +1221,13 @@ class PGGraphStorage(BaseGraphStorage):
Returns:
list[str]: A list of all labels in the graph.
"""
query = """SELECT * FROM cypher('%s', $$
query = (
"""SELECT * FROM cypher('%s', $$
MATCH (n:Entity)
RETURN DISTINCT n.node_id AS label
$$) AS (label text)""" % self.graph_name
$$) AS (label text)"""
% self.graph_name
)
results = await self._query(query)
labels = [self._decode_graph_label(result["label"]) for result in results]
@@ -1260,7 +1273,10 @@ class PGGraphStorage(BaseGraphStorage):
OPTIONAL MATCH (n)-[r]->(m:Entity)
RETURN n, r, m
LIMIT %d
$$) AS (n agtype, r agtype, m agtype)""" % (self.graph_name, MAX_GRAPH_NODES)
$$) AS (n agtype, r agtype, m agtype)""" % (
self.graph_name,
MAX_GRAPH_NODES,
)
else:
encoded_node_label = self._encode_graph_label(node_label.strip('"'))
query = """SELECT * FROM cypher('%s', $$
@@ -1268,7 +1284,12 @@ class PGGraphStorage(BaseGraphStorage):
OPTIONAL MATCH p = (n)-[*..%d]-(m)
RETURN nodes(p) AS nodes, relationships(p) AS relationships
LIMIT %d
$$) AS (nodes agtype[], relationships agtype[])""" % (self.graph_name, encoded_node_label, max_depth, MAX_GRAPH_NODES)
$$) AS (nodes agtype[], relationships agtype[])""" % (
self.graph_name,
encoded_node_label,
max_depth,
MAX_GRAPH_NODES,
)
results = await self._query(query)
@@ -1305,29 +1326,6 @@ class PGGraphStorage(BaseGraphStorage):
return kg
async def get_all_labels(self) -> list[str]:
"""
Get all node labels in the graph
Returns:
[label1, label2, ...] # Alphabetically sorted label list
"""
query = """SELECT * FROM cypher('%s', $$
MATCH (n:Entity)
RETURN DISTINCT n.node_id AS label
ORDER BY label
$$) AS (label agtype)""" % (self.graph_name)
try:
results = await self._query(query)
labels = []
for record in results:
if record["label"]:
labels.append(self._decode_graph_label(record["label"]))
return labels
except Exception as e:
logger.error(f"Error getting all labels: {str(e)}")
return []
async def drop(self) -> None:
"""Drop the storage"""
drop_sql = SQL_TEMPLATES["drop_vdb_entity"]

View File

@@ -143,7 +143,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
async def delete(self, ids: List[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
@@ -156,30 +156,34 @@ class QdrantVectorDBStorage(BaseVectorStorage):
points_selector=models.PointIdsList(
points=qdrant_ids,
),
wait=True
wait=True,
)
logger.debug(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by name
Args:
entity_name: Name of the entity to delete
"""
try:
# Generate the entity ID
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
# Delete the entity point from the collection
self._client.delete(
collection_name=self.namespace,
points_selector=models.PointIdsList(
points=[entity_id],
),
wait=True
wait=True,
)
logger.debug(f"Successfully deleted entity {entity_name}")
except Exception as e:
@@ -187,7 +191,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: Name of the entity whose relations should be deleted
"""
@@ -198,23 +202,21 @@ class QdrantVectorDBStorage(BaseVectorStorage):
scroll_filter=models.Filter(
should=[
models.FieldCondition(
key="src_id",
match=models.MatchValue(value=entity_name)
key="src_id", match=models.MatchValue(value=entity_name)
),
models.FieldCondition(
key="tgt_id",
match=models.MatchValue(value=entity_name)
)
key="tgt_id", match=models.MatchValue(value=entity_name)
),
]
),
with_payload=True,
limit=1000 # Adjust as needed for your use case
limit=1000, # Adjust as needed for your use case
)
# Extract points that need to be deleted
relation_points = results[0]
ids_to_delete = [point.id for point in relation_points]
if ids_to_delete:
# Delete the relations
self._client.delete(
@@ -222,9 +224,11 @@ class QdrantVectorDBStorage(BaseVectorStorage):
points_selector=models.PointIdsList(
points=ids_to_delete,
),
wait=True
wait=True,
)
logger.debug(
f"Deleted {len(ids_to_delete)} relations for {entity_name}"
)
logger.debug(f"Deleted {len(ids_to_delete)} relations for {entity_name}")
else:
logger.debug(f"No relations found for entity {entity_name}")
except Exception as e:

View File

@@ -67,35 +67,39 @@ class RedisKVStorage(BaseKVStorage):
async def delete(self, ids: list[str]) -> None:
"""Delete entries with specified IDs
Args:
ids: List of entry IDs to be deleted
"""
if not ids:
return
pipe = self._redis.pipeline()
for id in ids:
pipe.delete(f"{self.namespace}:{id}")
results = await pipe.execute()
deleted_count = sum(results)
logger.info(f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}")
logger.info(
f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}"
)
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by name
Args:
entity_name: Name of the entity to delete
"""
try:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
# Delete the entity
result = await self._redis.delete(f"{self.namespace}:{entity_id}")
if result:
logger.debug(f"Successfully deleted entity {entity_name}")
else:
@@ -105,7 +109,7 @@ class RedisKVStorage(BaseKVStorage):
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: Name of the entity whose relations should be deleted
"""
@@ -114,29 +118,32 @@ class RedisKVStorage(BaseKVStorage):
cursor = 0
relation_keys = []
pattern = f"{self.namespace}:*"
while True:
cursor, keys = await self._redis.scan(cursor, match=pattern)
# For each key, get the value and check if it's related to entity_name
for key in keys:
value = await self._redis.get(key)
if value:
data = json.loads(value)
# Check if this is a relation involving the entity
if data.get("src_id") == entity_name or data.get("tgt_id") == entity_name:
if (
data.get("src_id") == entity_name
or data.get("tgt_id") == entity_name
):
relation_keys.append(key)
# Exit loop when cursor returns to 0
if cursor == 0:
break
# Delete the relation keys
if relation_keys:
deleted = await self._redis.delete(*relation_keys)
logger.debug(f"Deleted {deleted} relations for {entity_name}")
else:
logger.debug(f"No relations found for entity {entity_name}")
except Exception as e:
logger.error(f"Error deleting relations for {entity_name}: {e}")

View File

@@ -567,62 +567,68 @@ class TiDBGraphStorage(BaseGraphStorage):
async def delete_node(self, node_id: str) -> None:
"""Delete a node and all its related edges
Args:
node_id: The ID of the node to delete
"""
# First delete all edges related to this node
await self.db.execute(SQL_TEMPLATES["delete_node_edges"],
{"name": node_id, "workspace": self.db.workspace})
await self.db.execute(
SQL_TEMPLATES["delete_node_edges"],
{"name": node_id, "workspace": self.db.workspace},
)
# Then delete the node itself
await self.db.execute(SQL_TEMPLATES["delete_node"],
{"name": node_id, "workspace": self.db.workspace})
logger.debug(f"Node {node_id} and its related edges have been deleted from the graph")
await self.db.execute(
SQL_TEMPLATES["delete_node"],
{"name": node_id, "workspace": self.db.workspace},
)
logger.debug(
f"Node {node_id} and its related edges have been deleted from the graph"
)
async def get_all_labels(self) -> list[str]:
"""Get all entity types (labels) in the database
Returns:
List of labels sorted alphabetically
"""
result = await self.db.query(
SQL_TEMPLATES["get_all_labels"],
{"workspace": self.db.workspace},
multirows=True
SQL_TEMPLATES["get_all_labels"],
{"workspace": self.db.workspace},
multirows=True,
)
if not result:
return []
# Extract all labels
return [item["label"] for item in result]
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""
Get a connected subgraph of nodes matching the specified label
Maximum number of nodes is limited by MAX_GRAPH_NODES environment variable (default: 1000)
Args:
node_label: The node label to match
max_depth: Maximum depth of the subgraph
Returns:
KnowledgeGraph object containing nodes and edges
"""
result = KnowledgeGraph()
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
# Get matching nodes
if node_label == "*":
# Handle special case, get all nodes
node_results = await self.db.query(
SQL_TEMPLATES["get_all_nodes"],
{"workspace": self.db.workspace, "max_nodes": MAX_GRAPH_NODES},
multirows=True
multirows=True,
)
else:
# Get nodes matching the label
@@ -630,84 +636,93 @@ class TiDBGraphStorage(BaseGraphStorage):
node_results = await self.db.query(
SQL_TEMPLATES["get_matching_nodes"],
{"workspace": self.db.workspace, "label_pattern": label_pattern},
multirows=True
multirows=True,
)
if not node_results:
logger.warning(f"No nodes found matching label {node_label}")
return result
# Limit the number of returned nodes
if len(node_results) > MAX_GRAPH_NODES:
node_results = node_results[:MAX_GRAPH_NODES]
# Extract node names for edge query
node_names = [node["name"] for node in node_results]
node_names_str = ",".join([f"'{name}'" for name in node_names])
# Add nodes to result
for node in node_results:
node_properties = {k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]}
node_properties = {
k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]
}
result.nodes.append(
KnowledgeGraphNode(
id=node["name"],
labels=[node["entity_type"]] if node.get("entity_type") else [node["name"]],
properties=node_properties
labels=[node["entity_type"]]
if node.get("entity_type")
else [node["name"]],
properties=node_properties,
)
)
# Get related edges
edge_results = await self.db.query(
SQL_TEMPLATES["get_related_edges"].format(node_names=node_names_str),
{"workspace": self.db.workspace},
multirows=True
multirows=True,
)
if edge_results:
# Add edges to result
for edge in edge_results:
# Only include edges related to selected nodes
if edge["source_name"] in node_names and edge["target_name"] in node_names:
if (
edge["source_name"] in node_names
and edge["target_name"] in node_names
):
edge_id = f"{edge['source_name']}-{edge['target_name']}"
edge_properties = {k: v for k, v in edge.items()
if k not in ["id", "source_name", "target_name"]}
edge_properties = {
k: v
for k, v in edge.items()
if k not in ["id", "source_name", "target_name"]
}
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="RELATED",
source=edge["source_name"],
target=edge["target_name"],
properties=edge_properties
properties=edge_properties,
)
)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
return result
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node IDs to delete
"""
for node_id in nodes:
await self.delete_node(node_id)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to delete, each edge is a (source, target) tuple
"""
for source, target in edges:
await self.db.execute(SQL_TEMPLATES["remove_multiple_edges"], {
"source": source,
"target": target,
"workspace": self.db.workspace
})
await self.db.execute(
SQL_TEMPLATES["remove_multiple_edges"],
{"source": source, "target": target, "workspace": self.db.workspace},
)
N_T = {
@@ -919,26 +934,26 @@ SQL_TEMPLATES = {
source_chunk_id = VALUES(source_chunk_id)
""",
"delete_node": """
DELETE FROM LIGHTRAG_GRAPH_NODES
DELETE FROM LIGHTRAG_GRAPH_NODES
WHERE name = :name AND workspace = :workspace
""",
"delete_node_edges": """
DELETE FROM LIGHTRAG_GRAPH_EDGES
DELETE FROM LIGHTRAG_GRAPH_EDGES
WHERE (source_name = :name OR target_name = :name) AND workspace = :workspace
""",
"get_all_labels": """
SELECT DISTINCT entity_type as label
FROM LIGHTRAG_GRAPH_NODES
SELECT DISTINCT entity_type as label
FROM LIGHTRAG_GRAPH_NODES
WHERE workspace = :workspace
ORDER BY entity_type
""",
"get_matching_nodes": """
SELECT * FROM LIGHTRAG_GRAPH_NODES
SELECT * FROM LIGHTRAG_GRAPH_NODES
WHERE name LIKE :label_pattern AND workspace = :workspace
ORDER BY name
""",
"get_all_nodes": """
SELECT * FROM LIGHTRAG_GRAPH_NODES
SELECT * FROM LIGHTRAG_GRAPH_NODES
WHERE workspace = :workspace
ORDER BY name
LIMIT :max_nodes
@@ -952,5 +967,5 @@ SQL_TEMPLATES = {
DELETE FROM LIGHTRAG_GRAPH_EDGES
WHERE (source_name = :source AND target_name = :target)
AND workspace = :workspace
"""
""",
}

View File

@@ -1401,40 +1401,54 @@ class LightRAG:
def delete_by_relation(self, source_entity: str, target_entity: str) -> None:
"""Synchronously delete a relation between two entities.
Args:
source_entity: Name of the source entity
target_entity: Name of the target entity
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(self.adelete_by_relation(source_entity, target_entity))
return loop.run_until_complete(
self.adelete_by_relation(source_entity, target_entity)
)
async def adelete_by_relation(self, source_entity: str, target_entity: str) -> None:
"""Asynchronously delete a relation between two entities.
Args:
source_entity: Name of the source entity
target_entity: Name of the target entity
"""
try:
# Check if the relation exists
edge_exists = await self.chunk_entity_relation_graph.has_edge(source_entity, target_entity)
edge_exists = await self.chunk_entity_relation_graph.has_edge(
source_entity, target_entity
)
if not edge_exists:
logger.warning(f"Relation from '{source_entity}' to '{target_entity}' does not exist")
logger.warning(
f"Relation from '{source_entity}' to '{target_entity}' does not exist"
)
return
# Delete relation from vector database
relation_id = compute_mdhash_id(source_entity + target_entity, prefix="rel-")
relation_id = compute_mdhash_id(
source_entity + target_entity, prefix="rel-"
)
await self.relationships_vdb.delete([relation_id])
# Delete relation from knowledge graph
await self.chunk_entity_relation_graph.remove_edges([(source_entity, target_entity)])
logger.info(f"Successfully deleted relation from '{source_entity}' to '{target_entity}'")
await self.chunk_entity_relation_graph.remove_edges(
[(source_entity, target_entity)]
)
logger.info(
f"Successfully deleted relation from '{source_entity}' to '{target_entity}'"
)
await self._delete_relation_done()
except Exception as e:
logger.error(f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}")
logger.error(
f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}"
)
async def _delete_relation_done(self) -> None:
"""Callback after relation deletion is complete"""
await asyncio.gather(