fix linting
This commit is contained in:
@@ -619,7 +619,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
node_id: The label of the node to delete
|
node_id: The label of the node to delete
|
||||||
"""
|
"""
|
||||||
entity_name_label = node_id.strip('"')
|
entity_name_label = node_id.strip('"')
|
||||||
|
|
||||||
query = """
|
query = """
|
||||||
MATCH (n:`{label}`)
|
MATCH (n:`{label}`)
|
||||||
DETACH DELETE n
|
DETACH DELETE n
|
||||||
@@ -650,18 +650,20 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
for source, target in edges:
|
for source, target in edges:
|
||||||
entity_name_label_source = source.strip('"')
|
entity_name_label_source = source.strip('"')
|
||||||
entity_name_label_target = target.strip('"')
|
entity_name_label_target = target.strip('"')
|
||||||
|
|
||||||
query = """
|
query = """
|
||||||
MATCH (source:`{src_label}`)-[r]->(target:`{tgt_label}`)
|
MATCH (source:`{src_label}`)-[r]->(target:`{tgt_label}`)
|
||||||
DELETE r
|
DELETE r
|
||||||
"""
|
"""
|
||||||
params = {
|
params = {
|
||||||
"src_label": AGEStorage._encode_graph_label(entity_name_label_source),
|
"src_label": AGEStorage._encode_graph_label(entity_name_label_source),
|
||||||
"tgt_label": AGEStorage._encode_graph_label(entity_name_label_target)
|
"tgt_label": AGEStorage._encode_graph_label(entity_name_label_target),
|
||||||
}
|
}
|
||||||
try:
|
try:
|
||||||
await self._query(query, **params)
|
await self._query(query, **params)
|
||||||
logger.debug(f"Deleted edge from '{entity_name_label_source}' to '{entity_name_label_target}'")
|
logger.debug(
|
||||||
|
f"Deleted edge from '{entity_name_label_source}' to '{entity_name_label_target}'"
|
||||||
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error during edge deletion: {str(e)}")
|
logger.error(f"Error during edge deletion: {str(e)}")
|
||||||
raise
|
raise
|
||||||
@@ -683,7 +685,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
async def get_all_labels(self) -> list[str]:
|
async def get_all_labels(self) -> list[str]:
|
||||||
"""Get all node labels in the database
|
"""Get all node labels in the database
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
["label1", "label2", ...] # Alphabetically sorted label list
|
["label1", "label2", ...] # Alphabetically sorted label list
|
||||||
"""
|
"""
|
||||||
@@ -692,7 +694,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
RETURN DISTINCT labels(n) AS node_labels
|
RETURN DISTINCT labels(n) AS node_labels
|
||||||
"""
|
"""
|
||||||
results = await self._query(query)
|
results = await self._query(query)
|
||||||
|
|
||||||
all_labels = []
|
all_labels = []
|
||||||
for record in results:
|
for record in results:
|
||||||
if record and "node_labels" in record:
|
if record and "node_labels" in record:
|
||||||
@@ -701,7 +703,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
# Decode label
|
# Decode label
|
||||||
decoded_label = AGEStorage._decode_graph_label(label)
|
decoded_label = AGEStorage._decode_graph_label(label)
|
||||||
all_labels.append(decoded_label)
|
all_labels.append(decoded_label)
|
||||||
|
|
||||||
# Remove duplicates and sort
|
# Remove duplicates and sort
|
||||||
return sorted(list(set(all_labels)))
|
return sorted(list(set(all_labels)))
|
||||||
|
|
||||||
@@ -719,7 +721,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
Args:
|
Args:
|
||||||
node_label: String to match in node labels (will match any node containing this string in its label)
|
node_label: String to match in node labels (will match any node containing this string in its label)
|
||||||
max_depth: Maximum depth of the graph. Defaults to 5.
|
max_depth: Maximum depth of the graph. Defaults to 5.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
KnowledgeGraph: Complete connected subgraph for specified node
|
KnowledgeGraph: Complete connected subgraph for specified node
|
||||||
"""
|
"""
|
||||||
@@ -727,7 +729,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
result = KnowledgeGraph()
|
result = KnowledgeGraph()
|
||||||
seen_nodes = set()
|
seen_nodes = set()
|
||||||
seen_edges = set()
|
seen_edges = set()
|
||||||
|
|
||||||
# Handle special case for "*" label
|
# Handle special case for "*" label
|
||||||
if node_label == "*":
|
if node_label == "*":
|
||||||
# Query all nodes and sort by degree
|
# Query all nodes and sort by degree
|
||||||
@@ -741,7 +743,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
params = {"max_nodes": max_graph_nodes}
|
params = {"max_nodes": max_graph_nodes}
|
||||||
nodes_result = await self._query(query, **params)
|
nodes_result = await self._query(query, **params)
|
||||||
|
|
||||||
# Add nodes to result
|
# Add nodes to result
|
||||||
node_ids = []
|
node_ids = []
|
||||||
for record in nodes_result:
|
for record in nodes_result:
|
||||||
@@ -755,12 +757,12 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=node_id,
|
id=node_id,
|
||||||
labels=[node_label],
|
labels=[node_label],
|
||||||
properties=node_properties
|
properties=node_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_nodes.add(node_id)
|
seen_nodes.add(node_id)
|
||||||
node_ids.append(node_id)
|
node_ids.append(node_id)
|
||||||
|
|
||||||
# Query edges between these nodes
|
# Query edges between these nodes
|
||||||
if node_ids:
|
if node_ids:
|
||||||
edges_query = """
|
edges_query = """
|
||||||
@@ -770,7 +772,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
edges_params = {"node_ids": node_ids}
|
edges_params = {"node_ids": node_ids}
|
||||||
edges_result = await self._query(edges_query, **edges_params)
|
edges_result = await self._query(edges_query, **edges_params)
|
||||||
|
|
||||||
# Add edges to result
|
# Add edges to result
|
||||||
for record in edges_result:
|
for record in edges_result:
|
||||||
if "r" in record and "a" in record and "b" in record:
|
if "r" in record and "a" in record and "b" in record:
|
||||||
@@ -785,7 +787,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
type="DIRECTED",
|
type="DIRECTED",
|
||||||
source=source,
|
source=source,
|
||||||
target=target,
|
target=target,
|
||||||
properties=edge_properties
|
properties=edge_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_edges.add(edge_id)
|
seen_edges.add(edge_id)
|
||||||
@@ -793,7 +795,7 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
# For specific label, use partial matching
|
# For specific label, use partial matching
|
||||||
entity_name_label = node_label.strip('"')
|
entity_name_label = node_label.strip('"')
|
||||||
encoded_label = AGEStorage._encode_graph_label(entity_name_label)
|
encoded_label = AGEStorage._encode_graph_label(entity_name_label)
|
||||||
|
|
||||||
# Find matching start nodes
|
# Find matching start nodes
|
||||||
start_query = """
|
start_query = """
|
||||||
MATCH (n:`{label}`)
|
MATCH (n:`{label}`)
|
||||||
@@ -801,17 +803,14 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
start_params = {"label": encoded_label}
|
start_params = {"label": encoded_label}
|
||||||
start_nodes = await self._query(start_query, **start_params)
|
start_nodes = await self._query(start_query, **start_params)
|
||||||
|
|
||||||
if not start_nodes:
|
if not start_nodes:
|
||||||
logger.warning(f"No nodes found with label '{entity_name_label}'!")
|
logger.warning(f"No nodes found with label '{entity_name_label}'!")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
# Traverse graph from each start node
|
# Traverse graph from each start node
|
||||||
for start_node_record in start_nodes:
|
for start_node_record in start_nodes:
|
||||||
if "n" in start_node_record:
|
if "n" in start_node_record:
|
||||||
start_node = start_node_record["n"]
|
|
||||||
start_id = str(start_node.get("id", ""))
|
|
||||||
|
|
||||||
# Use BFS to traverse graph
|
# Use BFS to traverse graph
|
||||||
query = """
|
query = """
|
||||||
MATCH (start:`{label}`)
|
MATCH (start:`{label}`)
|
||||||
@@ -823,25 +822,28 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
params = {"label": encoded_label, "max_depth": max_depth}
|
params = {"label": encoded_label, "max_depth": max_depth}
|
||||||
results = await self._query(query, **params)
|
results = await self._query(query, **params)
|
||||||
|
|
||||||
# Extract nodes and edges from results
|
# Extract nodes and edges from results
|
||||||
for record in results:
|
for record in results:
|
||||||
if "path_nodes" in record:
|
if "path_nodes" in record:
|
||||||
# Process nodes
|
# Process nodes
|
||||||
for node in record["path_nodes"]:
|
for node in record["path_nodes"]:
|
||||||
node_id = str(node.get("id", ""))
|
node_id = str(node.get("id", ""))
|
||||||
if node_id not in seen_nodes and len(seen_nodes) < max_graph_nodes:
|
if (
|
||||||
|
node_id not in seen_nodes
|
||||||
|
and len(seen_nodes) < max_graph_nodes
|
||||||
|
):
|
||||||
node_properties = {k: v for k, v in node.items()}
|
node_properties = {k: v for k, v in node.items()}
|
||||||
node_label = node.get("label", "")
|
node_label = node.get("label", "")
|
||||||
result.nodes.append(
|
result.nodes.append(
|
||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=node_id,
|
id=node_id,
|
||||||
labels=[node_label],
|
labels=[node_label],
|
||||||
properties=node_properties
|
properties=node_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_nodes.add(node_id)
|
seen_nodes.add(node_id)
|
||||||
|
|
||||||
if "path_rels" in record:
|
if "path_rels" in record:
|
||||||
# Process edges
|
# Process edges
|
||||||
for rel in record["path_rels"]:
|
for rel in record["path_rels"]:
|
||||||
@@ -856,11 +858,11 @@ class AGEStorage(BaseGraphStorage):
|
|||||||
type=rel.get("label", "DIRECTED"),
|
type=rel.get("label", "DIRECTED"),
|
||||||
source=source,
|
source=source,
|
||||||
target=target,
|
target=target,
|
||||||
properties=edge_properties
|
properties=edge_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_edges.add(edge_id)
|
seen_edges.add(edge_id)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||||
)
|
)
|
||||||
|
@@ -194,7 +194,7 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete_entity(self, entity_name: str) -> None:
|
async def delete_entity(self, entity_name: str) -> None:
|
||||||
"""Delete an entity by its ID.
|
"""Delete an entity by its ID.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: The ID of the entity to delete
|
entity_name: The ID of the entity to delete
|
||||||
"""
|
"""
|
||||||
@@ -206,24 +206,26 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
|||||||
raise
|
raise
|
||||||
|
|
||||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||||
"""Delete an entity and its relations by ID.
|
"""Delete an entity and its relations by ID.
|
||||||
In vector DB context, this is equivalent to delete_entity.
|
In vector DB context, this is equivalent to delete_entity.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: The ID of the entity to delete
|
entity_name: The ID of the entity to delete
|
||||||
"""
|
"""
|
||||||
await self.delete_entity(entity_name)
|
await self.delete_entity(entity_name)
|
||||||
|
|
||||||
async def delete(self, ids: list[str]) -> None:
|
async def delete(self, ids: list[str]) -> None:
|
||||||
"""Delete vectors with specified IDs
|
"""Delete vectors with specified IDs
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ids: List of vector IDs to be deleted
|
ids: List of vector IDs to be deleted
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||||
self._collection.delete(ids=ids)
|
self._collection.delete(ids=ids)
|
||||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
logger.debug(
|
||||||
|
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||||
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||||
raise
|
raise
|
||||||
|
@@ -397,12 +397,12 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
async def delete_node(self, node_id: str) -> None:
|
async def delete_node(self, node_id: str) -> None:
|
||||||
"""Delete a node with the specified entity_name
|
"""Delete a node with the specified entity_name
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_id: The entity_name of the node to delete
|
node_id: The entity_name of the node to delete
|
||||||
"""
|
"""
|
||||||
entity_name = GremlinStorage._fix_name(node_id)
|
entity_name = GremlinStorage._fix_name(node_id)
|
||||||
|
|
||||||
query = f"""g
|
query = f"""g
|
||||||
.V().has('graph', {self.graph_name})
|
.V().has('graph', {self.graph_name})
|
||||||
.has('entity_name', {entity_name})
|
.has('entity_name', {entity_name})
|
||||||
@@ -413,7 +413,7 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
logger.debug(
|
logger.debug(
|
||||||
"{%s}: Deleted node with entity_name '%s'",
|
"{%s}: Deleted node with entity_name '%s'",
|
||||||
inspect.currentframe().f_code.co_name,
|
inspect.currentframe().f_code.co_name,
|
||||||
entity_name
|
entity_name,
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error during node deletion: {str(e)}")
|
logger.error(f"Error during node deletion: {str(e)}")
|
||||||
@@ -425,13 +425,13 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
Embed nodes using the specified algorithm.
|
Embed nodes using the specified algorithm.
|
||||||
Currently, only node2vec is supported but never called.
|
Currently, only node2vec is supported but never called.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
algorithm: The name of the embedding algorithm to use
|
algorithm: The name of the embedding algorithm to use
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A tuple of (embeddings, node_ids)
|
A tuple of (embeddings, node_ids)
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
NotImplementedError: If the specified algorithm is not supported
|
NotImplementedError: If the specified algorithm is not supported
|
||||||
ValueError: If the algorithm is not supported
|
ValueError: If the algorithm is not supported
|
||||||
@@ -458,7 +458,7 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
logger.debug(
|
logger.debug(
|
||||||
"{%s}: Retrieved %d labels",
|
"{%s}: Retrieved %d labels",
|
||||||
inspect.currentframe().f_code.co_name,
|
inspect.currentframe().f_code.co_name,
|
||||||
len(labels)
|
len(labels),
|
||||||
)
|
)
|
||||||
return labels
|
return labels
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -471,7 +471,7 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
"""
|
"""
|
||||||
Retrieve a connected subgraph of nodes where the entity_name includes the specified `node_label`.
|
Retrieve a connected subgraph of nodes where the entity_name includes the specified `node_label`.
|
||||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_label: Entity name of the starting node
|
node_label: Entity name of the starting node
|
||||||
max_depth: Maximum depth of the subgraph
|
max_depth: Maximum depth of the subgraph
|
||||||
@@ -482,12 +482,12 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
result = KnowledgeGraph()
|
result = KnowledgeGraph()
|
||||||
seen_nodes = set()
|
seen_nodes = set()
|
||||||
seen_edges = set()
|
seen_edges = set()
|
||||||
|
|
||||||
# Get maximum number of graph nodes from environment variable, default is 1000
|
# Get maximum number of graph nodes from environment variable, default is 1000
|
||||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||||
|
|
||||||
entity_name = GremlinStorage._fix_name(node_label)
|
entity_name = GremlinStorage._fix_name(node_label)
|
||||||
|
|
||||||
# Handle special case for "*" label
|
# Handle special case for "*" label
|
||||||
if node_label == "*":
|
if node_label == "*":
|
||||||
# For "*", get all nodes and their edges (limited by MAX_GRAPH_NODES)
|
# For "*", get all nodes and their edges (limited by MAX_GRAPH_NODES)
|
||||||
@@ -497,25 +497,27 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
.elementMap()
|
.elementMap()
|
||||||
"""
|
"""
|
||||||
nodes_result = await self._query(query)
|
nodes_result = await self._query(query)
|
||||||
|
|
||||||
# Add nodes to result
|
# Add nodes to result
|
||||||
for node_data in nodes_result:
|
for node_data in nodes_result:
|
||||||
node_id = node_data.get('entity_name', str(node_data.get('id', '')))
|
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
|
||||||
if str(node_id) in seen_nodes:
|
if str(node_id) in seen_nodes:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Create node with properties
|
# Create node with properties
|
||||||
node_properties = {k: v for k, v in node_data.items() if k not in ['id', 'label']}
|
node_properties = {
|
||||||
|
k: v for k, v in node_data.items() if k not in ["id", "label"]
|
||||||
|
}
|
||||||
|
|
||||||
result.nodes.append(
|
result.nodes.append(
|
||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=str(node_id),
|
id=str(node_id),
|
||||||
labels=[str(node_id)],
|
labels=[str(node_id)],
|
||||||
properties=node_properties
|
properties=node_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_nodes.add(str(node_id))
|
seen_nodes.add(str(node_id))
|
||||||
|
|
||||||
# Get and add edges
|
# Get and add edges
|
||||||
if nodes_result:
|
if nodes_result:
|
||||||
query = f"""g
|
query = f"""g
|
||||||
@@ -530,30 +532,34 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
.by(elementMap())
|
.by(elementMap())
|
||||||
"""
|
"""
|
||||||
edges_result = await self._query(query)
|
edges_result = await self._query(query)
|
||||||
|
|
||||||
for path in edges_result:
|
for path in edges_result:
|
||||||
if len(path) >= 3: # source -> edge -> target
|
if len(path) >= 3: # source -> edge -> target
|
||||||
source = path[0]
|
source = path[0]
|
||||||
edge_data = path[1]
|
edge_data = path[1]
|
||||||
target = path[2]
|
target = path[2]
|
||||||
|
|
||||||
source_id = source.get('entity_name', str(source.get('id', '')))
|
source_id = source.get("entity_name", str(source.get("id", "")))
|
||||||
target_id = target.get('entity_name', str(target.get('id', '')))
|
target_id = target.get("entity_name", str(target.get("id", "")))
|
||||||
|
|
||||||
edge_id = f"{source_id}-{target_id}"
|
edge_id = f"{source_id}-{target_id}"
|
||||||
if edge_id in seen_edges:
|
if edge_id in seen_edges:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Create edge with properties
|
# Create edge with properties
|
||||||
edge_properties = {k: v for k, v in edge_data.items() if k not in ['id', 'label']}
|
edge_properties = {
|
||||||
|
k: v
|
||||||
|
for k, v in edge_data.items()
|
||||||
|
if k not in ["id", "label"]
|
||||||
|
}
|
||||||
|
|
||||||
result.edges.append(
|
result.edges.append(
|
||||||
KnowledgeGraphEdge(
|
KnowledgeGraphEdge(
|
||||||
id=edge_id,
|
id=edge_id,
|
||||||
type="DIRECTED",
|
type="DIRECTED",
|
||||||
source=str(source_id),
|
source=str(source_id),
|
||||||
target=str(target_id),
|
target=str(target_id),
|
||||||
properties=edge_properties
|
properties=edge_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_edges.add(edge_id)
|
seen_edges.add(edge_id)
|
||||||
@@ -570,30 +576,36 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
.elementMap()
|
.elementMap()
|
||||||
"""
|
"""
|
||||||
nodes_result = await self._query(query)
|
nodes_result = await self._query(query)
|
||||||
|
|
||||||
# Add nodes to result
|
# Add nodes to result
|
||||||
for node_data in nodes_result:
|
for node_data in nodes_result:
|
||||||
node_id = node_data.get('entity_name', str(node_data.get('id', '')))
|
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
|
||||||
if str(node_id) in seen_nodes:
|
if str(node_id) in seen_nodes:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Create node with properties
|
# Create node with properties
|
||||||
node_properties = {k: v for k, v in node_data.items() if k not in ['id', 'label']}
|
node_properties = {
|
||||||
|
k: v for k, v in node_data.items() if k not in ["id", "label"]
|
||||||
|
}
|
||||||
|
|
||||||
result.nodes.append(
|
result.nodes.append(
|
||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=str(node_id),
|
id=str(node_id),
|
||||||
labels=[str(node_id)],
|
labels=[str(node_id)],
|
||||||
properties=node_properties
|
properties=node_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_nodes.add(str(node_id))
|
seen_nodes.add(str(node_id))
|
||||||
|
|
||||||
# Get edges between the nodes in the result
|
# Get edges between the nodes in the result
|
||||||
if nodes_result:
|
if nodes_result:
|
||||||
node_ids = [n.get('entity_name', str(n.get('id', ''))) for n in nodes_result]
|
node_ids = [
|
||||||
node_ids_query = ", ".join([GremlinStorage._to_value_map(nid) for nid in node_ids])
|
n.get("entity_name", str(n.get("id", ""))) for n in nodes_result
|
||||||
|
]
|
||||||
|
node_ids_query = ", ".join(
|
||||||
|
[GremlinStorage._to_value_map(nid) for nid in node_ids]
|
||||||
|
)
|
||||||
|
|
||||||
query = f"""g
|
query = f"""g
|
||||||
.V().has('graph', {self.graph_name})
|
.V().has('graph', {self.graph_name})
|
||||||
.has('entity_name', within({node_ids_query}))
|
.has('entity_name', within({node_ids_query}))
|
||||||
@@ -606,38 +618,42 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
.by(elementMap())
|
.by(elementMap())
|
||||||
"""
|
"""
|
||||||
edges_result = await self._query(query)
|
edges_result = await self._query(query)
|
||||||
|
|
||||||
for path in edges_result:
|
for path in edges_result:
|
||||||
if len(path) >= 3: # source -> edge -> target
|
if len(path) >= 3: # source -> edge -> target
|
||||||
source = path[0]
|
source = path[0]
|
||||||
edge_data = path[1]
|
edge_data = path[1]
|
||||||
target = path[2]
|
target = path[2]
|
||||||
|
|
||||||
source_id = source.get('entity_name', str(source.get('id', '')))
|
source_id = source.get("entity_name", str(source.get("id", "")))
|
||||||
target_id = target.get('entity_name', str(target.get('id', '')))
|
target_id = target.get("entity_name", str(target.get("id", "")))
|
||||||
|
|
||||||
edge_id = f"{source_id}-{target_id}"
|
edge_id = f"{source_id}-{target_id}"
|
||||||
if edge_id in seen_edges:
|
if edge_id in seen_edges:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Create edge with properties
|
# Create edge with properties
|
||||||
edge_properties = {k: v for k, v in edge_data.items() if k not in ['id', 'label']}
|
edge_properties = {
|
||||||
|
k: v
|
||||||
|
for k, v in edge_data.items()
|
||||||
|
if k not in ["id", "label"]
|
||||||
|
}
|
||||||
|
|
||||||
result.edges.append(
|
result.edges.append(
|
||||||
KnowledgeGraphEdge(
|
KnowledgeGraphEdge(
|
||||||
id=edge_id,
|
id=edge_id,
|
||||||
type="DIRECTED",
|
type="DIRECTED",
|
||||||
source=str(source_id),
|
source=str(source_id),
|
||||||
target=str(target_id),
|
target=str(target_id),
|
||||||
properties=edge_properties
|
properties=edge_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_edges.add(edge_id)
|
seen_edges.add(edge_id)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
"Subgraph query successful | Node count: %d | Edge count: %d",
|
"Subgraph query successful | Node count: %d | Edge count: %d",
|
||||||
len(result.nodes),
|
len(result.nodes),
|
||||||
len(result.edges)
|
len(result.edges),
|
||||||
)
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@@ -659,7 +675,7 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
for source, target in edges:
|
for source, target in edges:
|
||||||
entity_name_source = GremlinStorage._fix_name(source)
|
entity_name_source = GremlinStorage._fix_name(source)
|
||||||
entity_name_target = GremlinStorage._fix_name(target)
|
entity_name_target = GremlinStorage._fix_name(target)
|
||||||
|
|
||||||
query = f"""g
|
query = f"""g
|
||||||
.V().has('graph', {self.graph_name})
|
.V().has('graph', {self.graph_name})
|
||||||
.has('entity_name', {entity_name_source})
|
.has('entity_name', {entity_name_source})
|
||||||
@@ -674,7 +690,7 @@ class GremlinStorage(BaseGraphStorage):
|
|||||||
"{%s}: Deleted edge from '%s' to '%s'",
|
"{%s}: Deleted edge from '%s' to '%s'",
|
||||||
inspect.currentframe().f_code.co_name,
|
inspect.currentframe().f_code.co_name,
|
||||||
entity_name_source,
|
entity_name_source,
|
||||||
entity_name_target
|
entity_name_target,
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error during edge deletion: {str(e)}")
|
logger.error(f"Error during edge deletion: {str(e)}")
|
||||||
|
@@ -125,83 +125,84 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete_entity(self, entity_name: str) -> None:
|
async def delete_entity(self, entity_name: str) -> None:
|
||||||
"""Delete an entity from the vector database
|
"""Delete an entity from the vector database
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: The name of the entity to delete
|
entity_name: The name of the entity to delete
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Compute entity ID from name
|
# Compute entity ID from name
|
||||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
logger.debug(
|
||||||
|
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||||
|
)
|
||||||
|
|
||||||
# Delete the entity from Milvus collection
|
# Delete the entity from Milvus collection
|
||||||
result = self._client.delete(
|
result = self._client.delete(
|
||||||
collection_name=self.namespace,
|
collection_name=self.namespace, pks=[entity_id]
|
||||||
pks=[entity_id]
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if result and result.get("delete_count", 0) > 0:
|
if result and result.get("delete_count", 0) > 0:
|
||||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||||
else:
|
else:
|
||||||
logger.debug(f"Entity {entity_name} not found in storage")
|
logger.debug(f"Entity {entity_name} not found in storage")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error deleting entity {entity_name}: {e}")
|
logger.error(f"Error deleting entity {entity_name}: {e}")
|
||||||
|
|
||||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||||
"""Delete all relations associated with an entity
|
"""Delete all relations associated with an entity
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: The name of the entity whose relations should be deleted
|
entity_name: The name of the entity whose relations should be deleted
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Search for relations where entity is either source or target
|
# Search for relations where entity is either source or target
|
||||||
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"'
|
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"'
|
||||||
|
|
||||||
# Find all relations involving this entity
|
# Find all relations involving this entity
|
||||||
results = self._client.query(
|
results = self._client.query(
|
||||||
collection_name=self.namespace,
|
collection_name=self.namespace, filter=expr, output_fields=["id"]
|
||||||
filter=expr,
|
|
||||||
output_fields=["id"]
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if not results or len(results) == 0:
|
if not results or len(results) == 0:
|
||||||
logger.debug(f"No relations found for entity {entity_name}")
|
logger.debug(f"No relations found for entity {entity_name}")
|
||||||
return
|
return
|
||||||
|
|
||||||
# Extract IDs of relations to delete
|
# Extract IDs of relations to delete
|
||||||
relation_ids = [item["id"] for item in results]
|
relation_ids = [item["id"] for item in results]
|
||||||
logger.debug(f"Found {len(relation_ids)} relations for entity {entity_name}")
|
logger.debug(
|
||||||
|
f"Found {len(relation_ids)} relations for entity {entity_name}"
|
||||||
|
)
|
||||||
|
|
||||||
# Delete the relations
|
# Delete the relations
|
||||||
if relation_ids:
|
if relation_ids:
|
||||||
delete_result = self._client.delete(
|
delete_result = self._client.delete(
|
||||||
collection_name=self.namespace,
|
collection_name=self.namespace, pks=relation_ids
|
||||||
pks=relation_ids
|
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.debug(f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}")
|
logger.debug(
|
||||||
|
f"Deleted {delete_result.get('delete_count', 0)} relations for {entity_name}"
|
||||||
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||||
|
|
||||||
async def delete(self, ids: list[str]) -> None:
|
async def delete(self, ids: list[str]) -> None:
|
||||||
"""Delete vectors with specified IDs
|
"""Delete vectors with specified IDs
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ids: List of vector IDs to be deleted
|
ids: List of vector IDs to be deleted
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Delete vectors by IDs
|
# Delete vectors by IDs
|
||||||
result = self._client.delete(
|
result = self._client.delete(collection_name=self.namespace, pks=ids)
|
||||||
collection_name=self.namespace,
|
|
||||||
pks=ids
|
|
||||||
)
|
|
||||||
|
|
||||||
if result and result.get("delete_count", 0) > 0:
|
if result and result.get("delete_count", 0) > 0:
|
||||||
logger.debug(f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}")
|
logger.debug(
|
||||||
|
f"Successfully deleted {result.get('delete_count', 0)} vectors from {self.namespace}"
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
logger.debug(f"No vectors were deleted from {self.namespace}")
|
logger.debug(f"No vectors were deleted from {self.namespace}")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||||
|
@@ -804,16 +804,15 @@ class MongoGraphStorage(BaseGraphStorage):
|
|||||||
logger.info(f"Deleting {len(nodes)} nodes")
|
logger.info(f"Deleting {len(nodes)} nodes")
|
||||||
if not nodes:
|
if not nodes:
|
||||||
return
|
return
|
||||||
|
|
||||||
# 1. Remove all edges referencing these nodes (remove from edges array of other nodes)
|
# 1. Remove all edges referencing these nodes (remove from edges array of other nodes)
|
||||||
await self.collection.update_many(
|
await self.collection.update_many(
|
||||||
{},
|
{}, {"$pull": {"edges": {"target": {"$in": nodes}}}}
|
||||||
{"$pull": {"edges": {"target": {"$in": nodes}}}}
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# 2. Delete the node documents
|
# 2. Delete the node documents
|
||||||
await self.collection.delete_many({"_id": {"$in": nodes}})
|
await self.collection.delete_many({"_id": {"$in": nodes}})
|
||||||
|
|
||||||
logger.debug(f"Successfully deleted nodes: {nodes}")
|
logger.debug(f"Successfully deleted nodes: {nodes}")
|
||||||
|
|
||||||
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
|
||||||
@@ -825,20 +824,19 @@ class MongoGraphStorage(BaseGraphStorage):
|
|||||||
logger.info(f"Deleting {len(edges)} edges")
|
logger.info(f"Deleting {len(edges)} edges")
|
||||||
if not edges:
|
if not edges:
|
||||||
return
|
return
|
||||||
|
|
||||||
update_tasks = []
|
update_tasks = []
|
||||||
for source, target in edges:
|
for source, target in edges:
|
||||||
# Remove edge pointing to target from source node's edges array
|
# Remove edge pointing to target from source node's edges array
|
||||||
update_tasks.append(
|
update_tasks.append(
|
||||||
self.collection.update_one(
|
self.collection.update_one(
|
||||||
{"_id": source},
|
{"_id": source}, {"$pull": {"edges": {"target": target}}}
|
||||||
{"$pull": {"edges": {"target": target}}}
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
if update_tasks:
|
if update_tasks:
|
||||||
await asyncio.gather(*update_tasks)
|
await asyncio.gather(*update_tasks)
|
||||||
|
|
||||||
logger.debug(f"Successfully deleted edges: {edges}")
|
logger.debug(f"Successfully deleted edges: {edges}")
|
||||||
|
|
||||||
|
|
||||||
@@ -987,23 +985,29 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|||||||
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||||
if not ids:
|
if not ids:
|
||||||
return
|
return
|
||||||
|
|
||||||
try:
|
try:
|
||||||
result = await self._data.delete_many({"_id": {"$in": ids}})
|
result = await self._data.delete_many({"_id": {"$in": ids}})
|
||||||
logger.debug(f"Successfully deleted {result.deleted_count} vectors from {self.namespace}")
|
logger.debug(
|
||||||
|
f"Successfully deleted {result.deleted_count} vectors from {self.namespace}"
|
||||||
|
)
|
||||||
except PyMongoError as e:
|
except PyMongoError as e:
|
||||||
logger.error(f"Error while deleting vectors from {self.namespace}: {str(e)}")
|
logger.error(
|
||||||
|
f"Error while deleting vectors from {self.namespace}: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
async def delete_entity(self, entity_name: str) -> None:
|
async def delete_entity(self, entity_name: str) -> None:
|
||||||
"""Delete an entity by its name
|
"""Delete an entity by its name
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity to delete
|
entity_name: Name of the entity to delete
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
logger.debug(
|
||||||
|
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||||
|
)
|
||||||
|
|
||||||
result = await self._data.delete_one({"_id": entity_id})
|
result = await self._data.delete_one({"_id": entity_id})
|
||||||
if result.deleted_count > 0:
|
if result.deleted_count > 0:
|
||||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||||
@@ -1014,7 +1018,7 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||||
"""Delete all relations associated with an entity
|
"""Delete all relations associated with an entity
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity whose relations should be deleted
|
entity_name: Name of the entity whose relations should be deleted
|
||||||
"""
|
"""
|
||||||
@@ -1024,15 +1028,17 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|||||||
{"$or": [{"src_id": entity_name}, {"tgt_id": entity_name}]}
|
{"$or": [{"src_id": entity_name}, {"tgt_id": entity_name}]}
|
||||||
)
|
)
|
||||||
relations = await relations_cursor.to_list(length=None)
|
relations = await relations_cursor.to_list(length=None)
|
||||||
|
|
||||||
if not relations:
|
if not relations:
|
||||||
logger.debug(f"No relations found for entity {entity_name}")
|
logger.debug(f"No relations found for entity {entity_name}")
|
||||||
return
|
return
|
||||||
|
|
||||||
# Extract IDs of relations to delete
|
# Extract IDs of relations to delete
|
||||||
relation_ids = [relation["_id"] for relation in relations]
|
relation_ids = [relation["_id"] for relation in relations]
|
||||||
logger.debug(f"Found {len(relation_ids)} relations for entity {entity_name}")
|
logger.debug(
|
||||||
|
f"Found {len(relation_ids)} relations for entity {entity_name}"
|
||||||
|
)
|
||||||
|
|
||||||
# Delete the relations
|
# Delete the relations
|
||||||
result = await self._data.delete_many({"_id": {"$in": relation_ids}})
|
result = await self._data.delete_many({"_id": {"$in": relation_ids}})
|
||||||
logger.debug(f"Deleted {result.deleted_count} relations for {entity_name}")
|
logger.debug(f"Deleted {result.deleted_count} relations for {entity_name}")
|
||||||
|
@@ -444,27 +444,29 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete(self, ids: list[str]) -> None:
|
async def delete(self, ids: list[str]) -> None:
|
||||||
"""Delete vectors with specified IDs
|
"""Delete vectors with specified IDs
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ids: List of vector IDs to be deleted
|
ids: List of vector IDs to be deleted
|
||||||
"""
|
"""
|
||||||
if not ids:
|
if not ids:
|
||||||
return
|
return
|
||||||
|
|
||||||
try:
|
try:
|
||||||
SQL = SQL_TEMPLATES["delete_vectors"].format(
|
SQL = SQL_TEMPLATES["delete_vectors"].format(
|
||||||
ids=",".join([f"'{id}'" for id in ids])
|
ids=",".join([f"'{id}'" for id in ids])
|
||||||
)
|
)
|
||||||
params = {"workspace": self.db.workspace}
|
params = {"workspace": self.db.workspace}
|
||||||
await self.db.execute(SQL, params)
|
await self.db.execute(SQL, params)
|
||||||
logger.info(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
logger.info(
|
||||||
|
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||||
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
async def delete_entity(self, entity_name: str) -> None:
|
async def delete_entity(self, entity_name: str) -> None:
|
||||||
"""Delete entity by name
|
"""Delete entity by name
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity to delete
|
entity_name: Name of the entity to delete
|
||||||
"""
|
"""
|
||||||
@@ -479,7 +481,7 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||||
"""Delete all relations connected to an entity
|
"""Delete all relations connected to an entity
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity whose relations should be deleted
|
entity_name: Name of the entity whose relations should be deleted
|
||||||
"""
|
"""
|
||||||
@@ -713,7 +715,7 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
async def delete_node(self, node_id: str) -> None:
|
async def delete_node(self, node_id: str) -> None:
|
||||||
"""Delete a node from the graph
|
"""Delete a node from the graph
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_id: ID of the node to delete
|
node_id: ID of the node to delete
|
||||||
"""
|
"""
|
||||||
@@ -722,33 +724,35 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
delete_relations_sql = SQL_TEMPLATES["delete_entity_relations"]
|
delete_relations_sql = SQL_TEMPLATES["delete_entity_relations"]
|
||||||
params_relations = {"workspace": self.db.workspace, "entity_name": node_id}
|
params_relations = {"workspace": self.db.workspace, "entity_name": node_id}
|
||||||
await self.db.execute(delete_relations_sql, params_relations)
|
await self.db.execute(delete_relations_sql, params_relations)
|
||||||
|
|
||||||
# Then delete the node itself
|
# Then delete the node itself
|
||||||
delete_node_sql = SQL_TEMPLATES["delete_entity"]
|
delete_node_sql = SQL_TEMPLATES["delete_entity"]
|
||||||
params_node = {"workspace": self.db.workspace, "entity_name": node_id}
|
params_node = {"workspace": self.db.workspace, "entity_name": node_id}
|
||||||
await self.db.execute(delete_node_sql, params_node)
|
await self.db.execute(delete_node_sql, params_node)
|
||||||
|
|
||||||
logger.info(f"Successfully deleted node {node_id} and all its relationships")
|
logger.info(
|
||||||
|
f"Successfully deleted node {node_id} and all its relationships"
|
||||||
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error deleting node {node_id}: {e}")
|
logger.error(f"Error deleting node {node_id}: {e}")
|
||||||
raise
|
raise
|
||||||
|
|
||||||
async def get_all_labels(self) -> list[str]:
|
async def get_all_labels(self) -> list[str]:
|
||||||
"""Get all unique entity types (labels) in the graph
|
"""Get all unique entity types (labels) in the graph
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of unique entity types/labels
|
List of unique entity types/labels
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
SQL = """
|
SQL = """
|
||||||
SELECT DISTINCT entity_type
|
SELECT DISTINCT entity_type
|
||||||
FROM LIGHTRAG_GRAPH_NODES
|
FROM LIGHTRAG_GRAPH_NODES
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
ORDER BY entity_type
|
ORDER BY entity_type
|
||||||
"""
|
"""
|
||||||
params = {"workspace": self.db.workspace}
|
params = {"workspace": self.db.workspace}
|
||||||
results = await self.db.query(SQL, params, multirows=True)
|
results = await self.db.query(SQL, params, multirows=True)
|
||||||
|
|
||||||
if results:
|
if results:
|
||||||
labels = [row["entity_type"] for row in results]
|
labels = [row["entity_type"] for row in results]
|
||||||
return labels
|
return labels
|
||||||
@@ -762,26 +766,26 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
self, node_label: str, max_depth: int = 5
|
self, node_label: str, max_depth: int = 5
|
||||||
) -> KnowledgeGraph:
|
) -> KnowledgeGraph:
|
||||||
"""Retrieve a connected subgraph starting from nodes matching the given label
|
"""Retrieve a connected subgraph starting from nodes matching the given label
|
||||||
|
|
||||||
Maximum number of nodes is constrained by MAX_GRAPH_NODES environment variable.
|
Maximum number of nodes is constrained by MAX_GRAPH_NODES environment variable.
|
||||||
Prioritizes nodes by:
|
Prioritizes nodes by:
|
||||||
1. Nodes matching the specified label
|
1. Nodes matching the specified label
|
||||||
2. Nodes directly connected to matching nodes
|
2. Nodes directly connected to matching nodes
|
||||||
3. Node degree (number of connections)
|
3. Node degree (number of connections)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_label: Label to match for starting nodes (use "*" for all nodes)
|
node_label: Label to match for starting nodes (use "*" for all nodes)
|
||||||
max_depth: Maximum depth of traversal from starting nodes
|
max_depth: Maximum depth of traversal from starting nodes
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
KnowledgeGraph object containing nodes and edges
|
KnowledgeGraph object containing nodes and edges
|
||||||
"""
|
"""
|
||||||
result = KnowledgeGraph()
|
result = KnowledgeGraph()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Define maximum number of nodes to return
|
# Define maximum number of nodes to return
|
||||||
max_graph_nodes = int(os.environ.get("MAX_GRAPH_NODES", 1000))
|
max_graph_nodes = int(os.environ.get("MAX_GRAPH_NODES", 1000))
|
||||||
|
|
||||||
if node_label == "*":
|
if node_label == "*":
|
||||||
# For "*" label, get all nodes up to the limit
|
# For "*" label, get all nodes up to the limit
|
||||||
nodes_sql = """
|
nodes_sql = """
|
||||||
@@ -791,30 +795,33 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
ORDER BY id
|
ORDER BY id
|
||||||
FETCH FIRST :limit ROWS ONLY
|
FETCH FIRST :limit ROWS ONLY
|
||||||
"""
|
"""
|
||||||
nodes_params = {"workspace": self.db.workspace, "limit": max_graph_nodes}
|
nodes_params = {
|
||||||
|
"workspace": self.db.workspace,
|
||||||
|
"limit": max_graph_nodes,
|
||||||
|
}
|
||||||
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
||||||
else:
|
else:
|
||||||
# For specific label, find matching nodes and related nodes
|
# For specific label, find matching nodes and related nodes
|
||||||
nodes_sql = """
|
nodes_sql = """
|
||||||
WITH matching_nodes AS (
|
WITH matching_nodes AS (
|
||||||
SELECT name
|
SELECT name
|
||||||
FROM LIGHTRAG_GRAPH_NODES
|
FROM LIGHTRAG_GRAPH_NODES
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
AND (name LIKE '%' || :node_label || '%' OR entity_type LIKE '%' || :node_label || '%')
|
AND (name LIKE '%' || :node_label || '%' OR entity_type LIKE '%' || :node_label || '%')
|
||||||
)
|
)
|
||||||
SELECT n.name, n.entity_type, n.description, n.source_chunk_id,
|
SELECT n.name, n.entity_type, n.description, n.source_chunk_id,
|
||||||
CASE
|
CASE
|
||||||
WHEN n.name IN (SELECT name FROM matching_nodes) THEN 2
|
WHEN n.name IN (SELECT name FROM matching_nodes) THEN 2
|
||||||
WHEN EXISTS (
|
WHEN EXISTS (
|
||||||
SELECT 1 FROM LIGHTRAG_GRAPH_EDGES e
|
SELECT 1 FROM LIGHTRAG_GRAPH_EDGES e
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
AND ((e.source_name = n.name AND e.target_name IN (SELECT name FROM matching_nodes))
|
AND ((e.source_name = n.name AND e.target_name IN (SELECT name FROM matching_nodes))
|
||||||
OR (e.target_name = n.name AND e.source_name IN (SELECT name FROM matching_nodes)))
|
OR (e.target_name = n.name AND e.source_name IN (SELECT name FROM matching_nodes)))
|
||||||
) THEN 1
|
) THEN 1
|
||||||
ELSE 0
|
ELSE 0
|
||||||
END AS priority,
|
END AS priority,
|
||||||
(SELECT COUNT(*) FROM LIGHTRAG_GRAPH_EDGES e
|
(SELECT COUNT(*) FROM LIGHTRAG_GRAPH_EDGES e
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
AND (e.source_name = n.name OR e.target_name = n.name)) AS degree
|
AND (e.source_name = n.name OR e.target_name = n.name)) AS degree
|
||||||
FROM LIGHTRAG_GRAPH_NODES n
|
FROM LIGHTRAG_GRAPH_NODES n
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
@@ -822,43 +829,41 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
FETCH FIRST :limit ROWS ONLY
|
FETCH FIRST :limit ROWS ONLY
|
||||||
"""
|
"""
|
||||||
nodes_params = {
|
nodes_params = {
|
||||||
"workspace": self.db.workspace,
|
"workspace": self.db.workspace,
|
||||||
"node_label": node_label,
|
"node_label": node_label,
|
||||||
"limit": max_graph_nodes
|
"limit": max_graph_nodes,
|
||||||
}
|
}
|
||||||
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
nodes = await self.db.query(nodes_sql, nodes_params, multirows=True)
|
||||||
|
|
||||||
if not nodes:
|
if not nodes:
|
||||||
logger.warning(f"No nodes found matching '{node_label}'")
|
logger.warning(f"No nodes found matching '{node_label}'")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
# Create mapping of node IDs to be used to filter edges
|
# Create mapping of node IDs to be used to filter edges
|
||||||
node_names = [node["name"] for node in nodes]
|
node_names = [node["name"] for node in nodes]
|
||||||
|
|
||||||
# Add nodes to result
|
# Add nodes to result
|
||||||
seen_nodes = set()
|
seen_nodes = set()
|
||||||
for node in nodes:
|
for node in nodes:
|
||||||
node_id = node["name"]
|
node_id = node["name"]
|
||||||
if node_id in seen_nodes:
|
if node_id in seen_nodes:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Create node properties dictionary
|
# Create node properties dictionary
|
||||||
properties = {
|
properties = {
|
||||||
"entity_type": node["entity_type"],
|
"entity_type": node["entity_type"],
|
||||||
"description": node["description"] or "",
|
"description": node["description"] or "",
|
||||||
"source_id": node["source_chunk_id"] or ""
|
"source_id": node["source_chunk_id"] or "",
|
||||||
}
|
}
|
||||||
|
|
||||||
# Add node to result
|
# Add node to result
|
||||||
result.nodes.append(
|
result.nodes.append(
|
||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=node_id,
|
id=node_id, labels=[node["entity_type"]], properties=properties
|
||||||
labels=[node["entity_type"]],
|
|
||||||
properties=properties
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_nodes.add(node_id)
|
seen_nodes.add(node_id)
|
||||||
|
|
||||||
# Get edges between these nodes
|
# Get edges between these nodes
|
||||||
edges_sql = """
|
edges_sql = """
|
||||||
SELECT source_name, target_name, weight, keywords, description, source_chunk_id
|
SELECT source_name, target_name, weight, keywords, description, source_chunk_id
|
||||||
@@ -868,30 +873,27 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
AND target_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
|
AND target_name IN (SELECT COLUMN_VALUE FROM TABLE(CAST(:node_names AS SYS.ODCIVARCHAR2LIST)))
|
||||||
ORDER BY id
|
ORDER BY id
|
||||||
"""
|
"""
|
||||||
edges_params = {
|
edges_params = {"workspace": self.db.workspace, "node_names": node_names}
|
||||||
"workspace": self.db.workspace,
|
|
||||||
"node_names": node_names
|
|
||||||
}
|
|
||||||
edges = await self.db.query(edges_sql, edges_params, multirows=True)
|
edges = await self.db.query(edges_sql, edges_params, multirows=True)
|
||||||
|
|
||||||
# Add edges to result
|
# Add edges to result
|
||||||
seen_edges = set()
|
seen_edges = set()
|
||||||
for edge in edges:
|
for edge in edges:
|
||||||
source = edge["source_name"]
|
source = edge["source_name"]
|
||||||
target = edge["target_name"]
|
target = edge["target_name"]
|
||||||
edge_id = f"{source}-{target}"
|
edge_id = f"{source}-{target}"
|
||||||
|
|
||||||
if edge_id in seen_edges:
|
if edge_id in seen_edges:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Create edge properties dictionary
|
# Create edge properties dictionary
|
||||||
properties = {
|
properties = {
|
||||||
"weight": edge["weight"] or 0.0,
|
"weight": edge["weight"] or 0.0,
|
||||||
"keywords": edge["keywords"] or "",
|
"keywords": edge["keywords"] or "",
|
||||||
"description": edge["description"] or "",
|
"description": edge["description"] or "",
|
||||||
"source_id": edge["source_chunk_id"] or ""
|
"source_id": edge["source_chunk_id"] or "",
|
||||||
}
|
}
|
||||||
|
|
||||||
# Add edge to result
|
# Add edge to result
|
||||||
result.edges.append(
|
result.edges.append(
|
||||||
KnowledgeGraphEdge(
|
KnowledgeGraphEdge(
|
||||||
@@ -899,18 +901,18 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
type="RELATED",
|
type="RELATED",
|
||||||
source=source,
|
source=source,
|
||||||
target=target,
|
target=target,
|
||||||
properties=properties
|
properties=properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
seen_edges.add(edge_id)
|
seen_edges.add(edge_id)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||||
)
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error retrieving knowledge graph: {e}")
|
logger.error(f"Error retrieving knowledge graph: {e}")
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@@ -1166,8 +1168,8 @@ SQL_TEMPLATES = {
|
|||||||
"delete_vectors": "DELETE FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace AND id IN ({ids})",
|
"delete_vectors": "DELETE FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace AND id IN ({ids})",
|
||||||
"delete_entity": "DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace AND name=:entity_name",
|
"delete_entity": "DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace AND name=:entity_name",
|
||||||
"delete_entity_relations": "DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace AND (source_name=:entity_name OR target_name=:entity_name)",
|
"delete_entity_relations": "DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace AND (source_name=:entity_name OR target_name=:entity_name)",
|
||||||
"delete_node": """DELETE FROM GRAPH_TABLE (lightrag_graph
|
"delete_node": """DELETE FROM GRAPH_TABLE (lightrag_graph
|
||||||
MATCH (a)
|
MATCH (a)
|
||||||
WHERE a.workspace=:workspace AND a.name=:node_id
|
WHERE a.workspace=:workspace AND a.name=:node_id
|
||||||
ACTION DELETE a)""",
|
ACTION DELETE a)""",
|
||||||
}
|
}
|
||||||
|
@@ -527,11 +527,15 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
return
|
return
|
||||||
|
|
||||||
ids_list = ",".join([f"'{id}'" for id in ids])
|
ids_list = ",".join([f"'{id}'" for id in ids])
|
||||||
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id IN ({ids_list})"
|
delete_sql = (
|
||||||
|
f"DELETE FROM {table_name} WHERE workspace=$1 AND id IN ({ids_list})"
|
||||||
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
||||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
logger.debug(
|
||||||
|
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||||
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||||
|
|
||||||
@@ -543,12 +547,11 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Construct SQL to delete the entity
|
# Construct SQL to delete the entity
|
||||||
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
|
delete_sql = """DELETE FROM LIGHTRAG_VDB_ENTITY
|
||||||
WHERE workspace=$1 AND entity_name=$2"""
|
WHERE workspace=$1 AND entity_name=$2"""
|
||||||
|
|
||||||
await self.db.execute(
|
await self.db.execute(
|
||||||
delete_sql,
|
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||||
{"workspace": self.db.workspace, "entity_name": entity_name}
|
|
||||||
)
|
)
|
||||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -562,12 +565,11 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Delete relations where the entity is either the source or target
|
# Delete relations where the entity is either the source or target
|
||||||
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
|
delete_sql = """DELETE FROM LIGHTRAG_VDB_RELATION
|
||||||
WHERE workspace=$1 AND (source_id=$2 OR target_id=$2)"""
|
WHERE workspace=$1 AND (source_id=$2 OR target_id=$2)"""
|
||||||
|
|
||||||
await self.db.execute(
|
await self.db.execute(
|
||||||
delete_sql,
|
delete_sql, {"workspace": self.db.workspace, "entity_name": entity_name}
|
||||||
{"workspace": self.db.workspace, "entity_name": entity_name}
|
|
||||||
)
|
)
|
||||||
logger.debug(f"Successfully deleted relations for entity {entity_name}")
|
logger.debug(f"Successfully deleted relations for entity {entity_name}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -1167,7 +1169,9 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
Args:
|
Args:
|
||||||
node_ids (list[str]): A list of node IDs to remove.
|
node_ids (list[str]): A list of node IDs to remove.
|
||||||
"""
|
"""
|
||||||
encoded_node_ids = [self._encode_graph_label(node_id.strip('"')) for node_id in node_ids]
|
encoded_node_ids = [
|
||||||
|
self._encode_graph_label(node_id.strip('"')) for node_id in node_ids
|
||||||
|
]
|
||||||
node_id_list = ", ".join([f'"{node_id}"' for node_id in encoded_node_ids])
|
node_id_list = ", ".join([f'"{node_id}"' for node_id in encoded_node_ids])
|
||||||
|
|
||||||
query = """SELECT * FROM cypher('%s', $$
|
query = """SELECT * FROM cypher('%s', $$
|
||||||
@@ -1189,7 +1193,13 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
Args:
|
Args:
|
||||||
edges (list[tuple[str, str]]): A list of edges to remove, where each edge is a tuple of (source_node_id, target_node_id).
|
edges (list[tuple[str, str]]): A list of edges to remove, where each edge is a tuple of (source_node_id, target_node_id).
|
||||||
"""
|
"""
|
||||||
encoded_edges = [(self._encode_graph_label(src.strip('"')), self._encode_graph_label(tgt.strip('"'))) for src, tgt in edges]
|
encoded_edges = [
|
||||||
|
(
|
||||||
|
self._encode_graph_label(src.strip('"')),
|
||||||
|
self._encode_graph_label(tgt.strip('"')),
|
||||||
|
)
|
||||||
|
for src, tgt in edges
|
||||||
|
]
|
||||||
edge_list = ", ".join([f'["{src}", "{tgt}"]' for src, tgt in encoded_edges])
|
edge_list = ", ".join([f'["{src}", "{tgt}"]' for src, tgt in encoded_edges])
|
||||||
|
|
||||||
query = """SELECT * FROM cypher('%s', $$
|
query = """SELECT * FROM cypher('%s', $$
|
||||||
@@ -1211,10 +1221,13 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
Returns:
|
Returns:
|
||||||
list[str]: A list of all labels in the graph.
|
list[str]: A list of all labels in the graph.
|
||||||
"""
|
"""
|
||||||
query = """SELECT * FROM cypher('%s', $$
|
query = (
|
||||||
|
"""SELECT * FROM cypher('%s', $$
|
||||||
MATCH (n:Entity)
|
MATCH (n:Entity)
|
||||||
RETURN DISTINCT n.node_id AS label
|
RETURN DISTINCT n.node_id AS label
|
||||||
$$) AS (label text)""" % self.graph_name
|
$$) AS (label text)"""
|
||||||
|
% self.graph_name
|
||||||
|
)
|
||||||
|
|
||||||
results = await self._query(query)
|
results = await self._query(query)
|
||||||
labels = [self._decode_graph_label(result["label"]) for result in results]
|
labels = [self._decode_graph_label(result["label"]) for result in results]
|
||||||
@@ -1260,7 +1273,10 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
OPTIONAL MATCH (n)-[r]->(m:Entity)
|
OPTIONAL MATCH (n)-[r]->(m:Entity)
|
||||||
RETURN n, r, m
|
RETURN n, r, m
|
||||||
LIMIT %d
|
LIMIT %d
|
||||||
$$) AS (n agtype, r agtype, m agtype)""" % (self.graph_name, MAX_GRAPH_NODES)
|
$$) AS (n agtype, r agtype, m agtype)""" % (
|
||||||
|
self.graph_name,
|
||||||
|
MAX_GRAPH_NODES,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
encoded_node_label = self._encode_graph_label(node_label.strip('"'))
|
encoded_node_label = self._encode_graph_label(node_label.strip('"'))
|
||||||
query = """SELECT * FROM cypher('%s', $$
|
query = """SELECT * FROM cypher('%s', $$
|
||||||
@@ -1268,7 +1284,12 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
OPTIONAL MATCH p = (n)-[*..%d]-(m)
|
OPTIONAL MATCH p = (n)-[*..%d]-(m)
|
||||||
RETURN nodes(p) AS nodes, relationships(p) AS relationships
|
RETURN nodes(p) AS nodes, relationships(p) AS relationships
|
||||||
LIMIT %d
|
LIMIT %d
|
||||||
$$) AS (nodes agtype[], relationships agtype[])""" % (self.graph_name, encoded_node_label, max_depth, MAX_GRAPH_NODES)
|
$$) AS (nodes agtype[], relationships agtype[])""" % (
|
||||||
|
self.graph_name,
|
||||||
|
encoded_node_label,
|
||||||
|
max_depth,
|
||||||
|
MAX_GRAPH_NODES,
|
||||||
|
)
|
||||||
|
|
||||||
results = await self._query(query)
|
results = await self._query(query)
|
||||||
|
|
||||||
@@ -1305,29 +1326,6 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
return kg
|
return kg
|
||||||
|
|
||||||
async def get_all_labels(self) -> list[str]:
|
|
||||||
"""
|
|
||||||
Get all node labels in the graph
|
|
||||||
Returns:
|
|
||||||
[label1, label2, ...] # Alphabetically sorted label list
|
|
||||||
"""
|
|
||||||
query = """SELECT * FROM cypher('%s', $$
|
|
||||||
MATCH (n:Entity)
|
|
||||||
RETURN DISTINCT n.node_id AS label
|
|
||||||
ORDER BY label
|
|
||||||
$$) AS (label agtype)""" % (self.graph_name)
|
|
||||||
|
|
||||||
try:
|
|
||||||
results = await self._query(query)
|
|
||||||
labels = []
|
|
||||||
for record in results:
|
|
||||||
if record["label"]:
|
|
||||||
labels.append(self._decode_graph_label(record["label"]))
|
|
||||||
return labels
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(f"Error getting all labels: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
async def drop(self) -> None:
|
async def drop(self) -> None:
|
||||||
"""Drop the storage"""
|
"""Drop the storage"""
|
||||||
drop_sql = SQL_TEMPLATES["drop_vdb_entity"]
|
drop_sql = SQL_TEMPLATES["drop_vdb_entity"]
|
||||||
|
@@ -143,7 +143,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete(self, ids: List[str]) -> None:
|
async def delete(self, ids: List[str]) -> None:
|
||||||
"""Delete vectors with specified IDs
|
"""Delete vectors with specified IDs
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ids: List of vector IDs to be deleted
|
ids: List of vector IDs to be deleted
|
||||||
"""
|
"""
|
||||||
@@ -156,30 +156,34 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|||||||
points_selector=models.PointIdsList(
|
points_selector=models.PointIdsList(
|
||||||
points=qdrant_ids,
|
points=qdrant_ids,
|
||||||
),
|
),
|
||||||
wait=True
|
wait=True,
|
||||||
|
)
|
||||||
|
logger.debug(
|
||||||
|
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||||
)
|
)
|
||||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||||
|
|
||||||
async def delete_entity(self, entity_name: str) -> None:
|
async def delete_entity(self, entity_name: str) -> None:
|
||||||
"""Delete an entity by name
|
"""Delete an entity by name
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity to delete
|
entity_name: Name of the entity to delete
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Generate the entity ID
|
# Generate the entity ID
|
||||||
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
|
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
|
||||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
logger.debug(
|
||||||
|
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||||
|
)
|
||||||
|
|
||||||
# Delete the entity point from the collection
|
# Delete the entity point from the collection
|
||||||
self._client.delete(
|
self._client.delete(
|
||||||
collection_name=self.namespace,
|
collection_name=self.namespace,
|
||||||
points_selector=models.PointIdsList(
|
points_selector=models.PointIdsList(
|
||||||
points=[entity_id],
|
points=[entity_id],
|
||||||
),
|
),
|
||||||
wait=True
|
wait=True,
|
||||||
)
|
)
|
||||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -187,7 +191,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|||||||
|
|
||||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||||
"""Delete all relations associated with an entity
|
"""Delete all relations associated with an entity
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity whose relations should be deleted
|
entity_name: Name of the entity whose relations should be deleted
|
||||||
"""
|
"""
|
||||||
@@ -198,23 +202,21 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|||||||
scroll_filter=models.Filter(
|
scroll_filter=models.Filter(
|
||||||
should=[
|
should=[
|
||||||
models.FieldCondition(
|
models.FieldCondition(
|
||||||
key="src_id",
|
key="src_id", match=models.MatchValue(value=entity_name)
|
||||||
match=models.MatchValue(value=entity_name)
|
|
||||||
),
|
),
|
||||||
models.FieldCondition(
|
models.FieldCondition(
|
||||||
key="tgt_id",
|
key="tgt_id", match=models.MatchValue(value=entity_name)
|
||||||
match=models.MatchValue(value=entity_name)
|
),
|
||||||
)
|
|
||||||
]
|
]
|
||||||
),
|
),
|
||||||
with_payload=True,
|
with_payload=True,
|
||||||
limit=1000 # Adjust as needed for your use case
|
limit=1000, # Adjust as needed for your use case
|
||||||
)
|
)
|
||||||
|
|
||||||
# Extract points that need to be deleted
|
# Extract points that need to be deleted
|
||||||
relation_points = results[0]
|
relation_points = results[0]
|
||||||
ids_to_delete = [point.id for point in relation_points]
|
ids_to_delete = [point.id for point in relation_points]
|
||||||
|
|
||||||
if ids_to_delete:
|
if ids_to_delete:
|
||||||
# Delete the relations
|
# Delete the relations
|
||||||
self._client.delete(
|
self._client.delete(
|
||||||
@@ -222,9 +224,11 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
|||||||
points_selector=models.PointIdsList(
|
points_selector=models.PointIdsList(
|
||||||
points=ids_to_delete,
|
points=ids_to_delete,
|
||||||
),
|
),
|
||||||
wait=True
|
wait=True,
|
||||||
|
)
|
||||||
|
logger.debug(
|
||||||
|
f"Deleted {len(ids_to_delete)} relations for {entity_name}"
|
||||||
)
|
)
|
||||||
logger.debug(f"Deleted {len(ids_to_delete)} relations for {entity_name}")
|
|
||||||
else:
|
else:
|
||||||
logger.debug(f"No relations found for entity {entity_name}")
|
logger.debug(f"No relations found for entity {entity_name}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
@@ -67,35 +67,39 @@ class RedisKVStorage(BaseKVStorage):
|
|||||||
|
|
||||||
async def delete(self, ids: list[str]) -> None:
|
async def delete(self, ids: list[str]) -> None:
|
||||||
"""Delete entries with specified IDs
|
"""Delete entries with specified IDs
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ids: List of entry IDs to be deleted
|
ids: List of entry IDs to be deleted
|
||||||
"""
|
"""
|
||||||
if not ids:
|
if not ids:
|
||||||
return
|
return
|
||||||
|
|
||||||
pipe = self._redis.pipeline()
|
pipe = self._redis.pipeline()
|
||||||
for id in ids:
|
for id in ids:
|
||||||
pipe.delete(f"{self.namespace}:{id}")
|
pipe.delete(f"{self.namespace}:{id}")
|
||||||
|
|
||||||
results = await pipe.execute()
|
results = await pipe.execute()
|
||||||
deleted_count = sum(results)
|
deleted_count = sum(results)
|
||||||
logger.info(f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}")
|
logger.info(
|
||||||
|
f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}"
|
||||||
|
)
|
||||||
|
|
||||||
async def delete_entity(self, entity_name: str) -> None:
|
async def delete_entity(self, entity_name: str) -> None:
|
||||||
"""Delete an entity by name
|
"""Delete an entity by name
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity to delete
|
entity_name: Name of the entity to delete
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||||
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
logger.debug(
|
||||||
|
f"Attempting to delete entity {entity_name} with ID {entity_id}"
|
||||||
|
)
|
||||||
|
|
||||||
# Delete the entity
|
# Delete the entity
|
||||||
result = await self._redis.delete(f"{self.namespace}:{entity_id}")
|
result = await self._redis.delete(f"{self.namespace}:{entity_id}")
|
||||||
|
|
||||||
if result:
|
if result:
|
||||||
logger.debug(f"Successfully deleted entity {entity_name}")
|
logger.debug(f"Successfully deleted entity {entity_name}")
|
||||||
else:
|
else:
|
||||||
@@ -105,7 +109,7 @@ class RedisKVStorage(BaseKVStorage):
|
|||||||
|
|
||||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||||
"""Delete all relations associated with an entity
|
"""Delete all relations associated with an entity
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
entity_name: Name of the entity whose relations should be deleted
|
entity_name: Name of the entity whose relations should be deleted
|
||||||
"""
|
"""
|
||||||
@@ -114,29 +118,32 @@ class RedisKVStorage(BaseKVStorage):
|
|||||||
cursor = 0
|
cursor = 0
|
||||||
relation_keys = []
|
relation_keys = []
|
||||||
pattern = f"{self.namespace}:*"
|
pattern = f"{self.namespace}:*"
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
cursor, keys = await self._redis.scan(cursor, match=pattern)
|
cursor, keys = await self._redis.scan(cursor, match=pattern)
|
||||||
|
|
||||||
# For each key, get the value and check if it's related to entity_name
|
# For each key, get the value and check if it's related to entity_name
|
||||||
for key in keys:
|
for key in keys:
|
||||||
value = await self._redis.get(key)
|
value = await self._redis.get(key)
|
||||||
if value:
|
if value:
|
||||||
data = json.loads(value)
|
data = json.loads(value)
|
||||||
# Check if this is a relation involving the entity
|
# Check if this is a relation involving the entity
|
||||||
if data.get("src_id") == entity_name or data.get("tgt_id") == entity_name:
|
if (
|
||||||
|
data.get("src_id") == entity_name
|
||||||
|
or data.get("tgt_id") == entity_name
|
||||||
|
):
|
||||||
relation_keys.append(key)
|
relation_keys.append(key)
|
||||||
|
|
||||||
# Exit loop when cursor returns to 0
|
# Exit loop when cursor returns to 0
|
||||||
if cursor == 0:
|
if cursor == 0:
|
||||||
break
|
break
|
||||||
|
|
||||||
# Delete the relation keys
|
# Delete the relation keys
|
||||||
if relation_keys:
|
if relation_keys:
|
||||||
deleted = await self._redis.delete(*relation_keys)
|
deleted = await self._redis.delete(*relation_keys)
|
||||||
logger.debug(f"Deleted {deleted} relations for {entity_name}")
|
logger.debug(f"Deleted {deleted} relations for {entity_name}")
|
||||||
else:
|
else:
|
||||||
logger.debug(f"No relations found for entity {entity_name}")
|
logger.debug(f"No relations found for entity {entity_name}")
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||||
|
@@ -567,62 +567,68 @@ class TiDBGraphStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
async def delete_node(self, node_id: str) -> None:
|
async def delete_node(self, node_id: str) -> None:
|
||||||
"""Delete a node and all its related edges
|
"""Delete a node and all its related edges
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_id: The ID of the node to delete
|
node_id: The ID of the node to delete
|
||||||
"""
|
"""
|
||||||
# First delete all edges related to this node
|
# First delete all edges related to this node
|
||||||
await self.db.execute(SQL_TEMPLATES["delete_node_edges"],
|
await self.db.execute(
|
||||||
{"name": node_id, "workspace": self.db.workspace})
|
SQL_TEMPLATES["delete_node_edges"],
|
||||||
|
{"name": node_id, "workspace": self.db.workspace},
|
||||||
|
)
|
||||||
|
|
||||||
# Then delete the node itself
|
# Then delete the node itself
|
||||||
await self.db.execute(SQL_TEMPLATES["delete_node"],
|
await self.db.execute(
|
||||||
{"name": node_id, "workspace": self.db.workspace})
|
SQL_TEMPLATES["delete_node"],
|
||||||
|
{"name": node_id, "workspace": self.db.workspace},
|
||||||
logger.debug(f"Node {node_id} and its related edges have been deleted from the graph")
|
)
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"Node {node_id} and its related edges have been deleted from the graph"
|
||||||
|
)
|
||||||
|
|
||||||
async def get_all_labels(self) -> list[str]:
|
async def get_all_labels(self) -> list[str]:
|
||||||
"""Get all entity types (labels) in the database
|
"""Get all entity types (labels) in the database
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of labels sorted alphabetically
|
List of labels sorted alphabetically
|
||||||
"""
|
"""
|
||||||
result = await self.db.query(
|
result = await self.db.query(
|
||||||
SQL_TEMPLATES["get_all_labels"],
|
SQL_TEMPLATES["get_all_labels"],
|
||||||
{"workspace": self.db.workspace},
|
{"workspace": self.db.workspace},
|
||||||
multirows=True
|
multirows=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
if not result:
|
if not result:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
# Extract all labels
|
# Extract all labels
|
||||||
return [item["label"] for item in result]
|
return [item["label"] for item in result]
|
||||||
|
|
||||||
async def get_knowledge_graph(
|
async def get_knowledge_graph(
|
||||||
self, node_label: str, max_depth: int = 5
|
self, node_label: str, max_depth: int = 5
|
||||||
) -> KnowledgeGraph:
|
) -> KnowledgeGraph:
|
||||||
"""
|
"""
|
||||||
Get a connected subgraph of nodes matching the specified label
|
Get a connected subgraph of nodes matching the specified label
|
||||||
Maximum number of nodes is limited by MAX_GRAPH_NODES environment variable (default: 1000)
|
Maximum number of nodes is limited by MAX_GRAPH_NODES environment variable (default: 1000)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
node_label: The node label to match
|
node_label: The node label to match
|
||||||
max_depth: Maximum depth of the subgraph
|
max_depth: Maximum depth of the subgraph
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
KnowledgeGraph object containing nodes and edges
|
KnowledgeGraph object containing nodes and edges
|
||||||
"""
|
"""
|
||||||
result = KnowledgeGraph()
|
result = KnowledgeGraph()
|
||||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||||
|
|
||||||
# Get matching nodes
|
# Get matching nodes
|
||||||
if node_label == "*":
|
if node_label == "*":
|
||||||
# Handle special case, get all nodes
|
# Handle special case, get all nodes
|
||||||
node_results = await self.db.query(
|
node_results = await self.db.query(
|
||||||
SQL_TEMPLATES["get_all_nodes"],
|
SQL_TEMPLATES["get_all_nodes"],
|
||||||
{"workspace": self.db.workspace, "max_nodes": MAX_GRAPH_NODES},
|
{"workspace": self.db.workspace, "max_nodes": MAX_GRAPH_NODES},
|
||||||
multirows=True
|
multirows=True,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# Get nodes matching the label
|
# Get nodes matching the label
|
||||||
@@ -630,84 +636,93 @@ class TiDBGraphStorage(BaseGraphStorage):
|
|||||||
node_results = await self.db.query(
|
node_results = await self.db.query(
|
||||||
SQL_TEMPLATES["get_matching_nodes"],
|
SQL_TEMPLATES["get_matching_nodes"],
|
||||||
{"workspace": self.db.workspace, "label_pattern": label_pattern},
|
{"workspace": self.db.workspace, "label_pattern": label_pattern},
|
||||||
multirows=True
|
multirows=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
if not node_results:
|
if not node_results:
|
||||||
logger.warning(f"No nodes found matching label {node_label}")
|
logger.warning(f"No nodes found matching label {node_label}")
|
||||||
return result
|
return result
|
||||||
|
|
||||||
# Limit the number of returned nodes
|
# Limit the number of returned nodes
|
||||||
if len(node_results) > MAX_GRAPH_NODES:
|
if len(node_results) > MAX_GRAPH_NODES:
|
||||||
node_results = node_results[:MAX_GRAPH_NODES]
|
node_results = node_results[:MAX_GRAPH_NODES]
|
||||||
|
|
||||||
# Extract node names for edge query
|
# Extract node names for edge query
|
||||||
node_names = [node["name"] for node in node_results]
|
node_names = [node["name"] for node in node_results]
|
||||||
node_names_str = ",".join([f"'{name}'" for name in node_names])
|
node_names_str = ",".join([f"'{name}'" for name in node_names])
|
||||||
|
|
||||||
# Add nodes to result
|
# Add nodes to result
|
||||||
for node in node_results:
|
for node in node_results:
|
||||||
node_properties = {k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]}
|
node_properties = {
|
||||||
|
k: v for k, v in node.items() if k not in ["id", "name", "entity_type"]
|
||||||
|
}
|
||||||
result.nodes.append(
|
result.nodes.append(
|
||||||
KnowledgeGraphNode(
|
KnowledgeGraphNode(
|
||||||
id=node["name"],
|
id=node["name"],
|
||||||
labels=[node["entity_type"]] if node.get("entity_type") else [node["name"]],
|
labels=[node["entity_type"]]
|
||||||
properties=node_properties
|
if node.get("entity_type")
|
||||||
|
else [node["name"]],
|
||||||
|
properties=node_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Get related edges
|
# Get related edges
|
||||||
edge_results = await self.db.query(
|
edge_results = await self.db.query(
|
||||||
SQL_TEMPLATES["get_related_edges"].format(node_names=node_names_str),
|
SQL_TEMPLATES["get_related_edges"].format(node_names=node_names_str),
|
||||||
{"workspace": self.db.workspace},
|
{"workspace": self.db.workspace},
|
||||||
multirows=True
|
multirows=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
if edge_results:
|
if edge_results:
|
||||||
# Add edges to result
|
# Add edges to result
|
||||||
for edge in edge_results:
|
for edge in edge_results:
|
||||||
# Only include edges related to selected nodes
|
# Only include edges related to selected nodes
|
||||||
if edge["source_name"] in node_names and edge["target_name"] in node_names:
|
if (
|
||||||
|
edge["source_name"] in node_names
|
||||||
|
and edge["target_name"] in node_names
|
||||||
|
):
|
||||||
edge_id = f"{edge['source_name']}-{edge['target_name']}"
|
edge_id = f"{edge['source_name']}-{edge['target_name']}"
|
||||||
edge_properties = {k: v for k, v in edge.items()
|
edge_properties = {
|
||||||
if k not in ["id", "source_name", "target_name"]}
|
k: v
|
||||||
|
for k, v in edge.items()
|
||||||
|
if k not in ["id", "source_name", "target_name"]
|
||||||
|
}
|
||||||
|
|
||||||
result.edges.append(
|
result.edges.append(
|
||||||
KnowledgeGraphEdge(
|
KnowledgeGraphEdge(
|
||||||
id=edge_id,
|
id=edge_id,
|
||||||
type="RELATED",
|
type="RELATED",
|
||||||
source=edge["source_name"],
|
source=edge["source_name"],
|
||||||
target=edge["target_name"],
|
target=edge["target_name"],
|
||||||
properties=edge_properties
|
properties=edge_properties,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||||
)
|
)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
async def remove_nodes(self, nodes: list[str]):
|
async def remove_nodes(self, nodes: list[str]):
|
||||||
"""Delete multiple nodes
|
"""Delete multiple nodes
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
nodes: List of node IDs to delete
|
nodes: List of node IDs to delete
|
||||||
"""
|
"""
|
||||||
for node_id in nodes:
|
for node_id in nodes:
|
||||||
await self.delete_node(node_id)
|
await self.delete_node(node_id)
|
||||||
|
|
||||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||||
"""Delete multiple edges
|
"""Delete multiple edges
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
edges: List of edges to delete, each edge is a (source, target) tuple
|
edges: List of edges to delete, each edge is a (source, target) tuple
|
||||||
"""
|
"""
|
||||||
for source, target in edges:
|
for source, target in edges:
|
||||||
await self.db.execute(SQL_TEMPLATES["remove_multiple_edges"], {
|
await self.db.execute(
|
||||||
"source": source,
|
SQL_TEMPLATES["remove_multiple_edges"],
|
||||||
"target": target,
|
{"source": source, "target": target, "workspace": self.db.workspace},
|
||||||
"workspace": self.db.workspace
|
)
|
||||||
})
|
|
||||||
|
|
||||||
|
|
||||||
N_T = {
|
N_T = {
|
||||||
@@ -919,26 +934,26 @@ SQL_TEMPLATES = {
|
|||||||
source_chunk_id = VALUES(source_chunk_id)
|
source_chunk_id = VALUES(source_chunk_id)
|
||||||
""",
|
""",
|
||||||
"delete_node": """
|
"delete_node": """
|
||||||
DELETE FROM LIGHTRAG_GRAPH_NODES
|
DELETE FROM LIGHTRAG_GRAPH_NODES
|
||||||
WHERE name = :name AND workspace = :workspace
|
WHERE name = :name AND workspace = :workspace
|
||||||
""",
|
""",
|
||||||
"delete_node_edges": """
|
"delete_node_edges": """
|
||||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||||
WHERE (source_name = :name OR target_name = :name) AND workspace = :workspace
|
WHERE (source_name = :name OR target_name = :name) AND workspace = :workspace
|
||||||
""",
|
""",
|
||||||
"get_all_labels": """
|
"get_all_labels": """
|
||||||
SELECT DISTINCT entity_type as label
|
SELECT DISTINCT entity_type as label
|
||||||
FROM LIGHTRAG_GRAPH_NODES
|
FROM LIGHTRAG_GRAPH_NODES
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
ORDER BY entity_type
|
ORDER BY entity_type
|
||||||
""",
|
""",
|
||||||
"get_matching_nodes": """
|
"get_matching_nodes": """
|
||||||
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
||||||
WHERE name LIKE :label_pattern AND workspace = :workspace
|
WHERE name LIKE :label_pattern AND workspace = :workspace
|
||||||
ORDER BY name
|
ORDER BY name
|
||||||
""",
|
""",
|
||||||
"get_all_nodes": """
|
"get_all_nodes": """
|
||||||
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
SELECT * FROM LIGHTRAG_GRAPH_NODES
|
||||||
WHERE workspace = :workspace
|
WHERE workspace = :workspace
|
||||||
ORDER BY name
|
ORDER BY name
|
||||||
LIMIT :max_nodes
|
LIMIT :max_nodes
|
||||||
@@ -952,5 +967,5 @@ SQL_TEMPLATES = {
|
|||||||
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
DELETE FROM LIGHTRAG_GRAPH_EDGES
|
||||||
WHERE (source_name = :source AND target_name = :target)
|
WHERE (source_name = :source AND target_name = :target)
|
||||||
AND workspace = :workspace
|
AND workspace = :workspace
|
||||||
"""
|
""",
|
||||||
}
|
}
|
||||||
|
@@ -1401,40 +1401,54 @@ class LightRAG:
|
|||||||
|
|
||||||
def delete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
def delete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
||||||
"""Synchronously delete a relation between two entities.
|
"""Synchronously delete a relation between two entities.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
source_entity: Name of the source entity
|
source_entity: Name of the source entity
|
||||||
target_entity: Name of the target entity
|
target_entity: Name of the target entity
|
||||||
"""
|
"""
|
||||||
loop = always_get_an_event_loop()
|
loop = always_get_an_event_loop()
|
||||||
return loop.run_until_complete(self.adelete_by_relation(source_entity, target_entity))
|
return loop.run_until_complete(
|
||||||
|
self.adelete_by_relation(source_entity, target_entity)
|
||||||
|
)
|
||||||
|
|
||||||
async def adelete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
async def adelete_by_relation(self, source_entity: str, target_entity: str) -> None:
|
||||||
"""Asynchronously delete a relation between two entities.
|
"""Asynchronously delete a relation between two entities.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
source_entity: Name of the source entity
|
source_entity: Name of the source entity
|
||||||
target_entity: Name of the target entity
|
target_entity: Name of the target entity
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
# Check if the relation exists
|
# Check if the relation exists
|
||||||
edge_exists = await self.chunk_entity_relation_graph.has_edge(source_entity, target_entity)
|
edge_exists = await self.chunk_entity_relation_graph.has_edge(
|
||||||
|
source_entity, target_entity
|
||||||
|
)
|
||||||
if not edge_exists:
|
if not edge_exists:
|
||||||
logger.warning(f"Relation from '{source_entity}' to '{target_entity}' does not exist")
|
logger.warning(
|
||||||
|
f"Relation from '{source_entity}' to '{target_entity}' does not exist"
|
||||||
|
)
|
||||||
return
|
return
|
||||||
|
|
||||||
# Delete relation from vector database
|
# Delete relation from vector database
|
||||||
relation_id = compute_mdhash_id(source_entity + target_entity, prefix="rel-")
|
relation_id = compute_mdhash_id(
|
||||||
|
source_entity + target_entity, prefix="rel-"
|
||||||
|
)
|
||||||
await self.relationships_vdb.delete([relation_id])
|
await self.relationships_vdb.delete([relation_id])
|
||||||
|
|
||||||
# Delete relation from knowledge graph
|
# Delete relation from knowledge graph
|
||||||
await self.chunk_entity_relation_graph.remove_edges([(source_entity, target_entity)])
|
await self.chunk_entity_relation_graph.remove_edges(
|
||||||
|
[(source_entity, target_entity)]
|
||||||
logger.info(f"Successfully deleted relation from '{source_entity}' to '{target_entity}'")
|
)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Successfully deleted relation from '{source_entity}' to '{target_entity}'"
|
||||||
|
)
|
||||||
await self._delete_relation_done()
|
await self._delete_relation_done()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}")
|
logger.error(
|
||||||
|
f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}"
|
||||||
|
)
|
||||||
|
|
||||||
async def _delete_relation_done(self) -> None:
|
async def _delete_relation_done(self) -> None:
|
||||||
"""Callback after relation deletion is complete"""
|
"""Callback after relation deletion is complete"""
|
||||||
await asyncio.gather(
|
await asyncio.gather(
|
||||||
|
Reference in New Issue
Block a user