update README.md

This commit is contained in:
Larfii
2024-10-08 16:08:45 +08:00
parent de38c0d53d
commit e607ff833c

View File

@@ -65,7 +65,7 @@ The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https
### Generate Query
LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`.
```json
```python
Given the following description of a dataset:
{description}
@@ -91,7 +91,7 @@ Output the results in the following structure:
### Batch Eval
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
```json
```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
@@ -160,7 +160,7 @@ Output your evaluation in the following JSON format:
## Code Structure
```json
```python
.
├── examples
├── batch_eval.py
@@ -183,7 +183,7 @@ Output your evaluation in the following JSON format:
```
## Citation
```json
```python
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
@@ -193,3 +193,4 @@ archivePrefix={arXiv},
primaryClass={cs.IR}
}
```