update README.md
This commit is contained in:
@@ -65,7 +65,7 @@ The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https
|
||||
|
||||
### Generate Query
|
||||
LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`.
|
||||
```json
|
||||
```python
|
||||
Given the following description of a dataset:
|
||||
|
||||
{description}
|
||||
@@ -91,7 +91,7 @@ Output the results in the following structure:
|
||||
|
||||
### Batch Eval
|
||||
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
|
||||
```json
|
||||
```python
|
||||
---Role---
|
||||
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
||||
---Goal---
|
||||
@@ -160,7 +160,7 @@ Output your evaluation in the following JSON format:
|
||||
|
||||
## Code Structure
|
||||
|
||||
```json
|
||||
```python
|
||||
.
|
||||
├── examples
|
||||
│ ├── batch_eval.py
|
||||
@@ -183,7 +183,7 @@ Output your evaluation in the following JSON format:
|
||||
```
|
||||
## Citation
|
||||
|
||||
```json
|
||||
```python
|
||||
@article{guo2024lightrag,
|
||||
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
|
||||
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
|
||||
@@ -193,3 +193,4 @@ archivePrefix={arXiv},
|
||||
primaryClass={cs.IR}
|
||||
}
|
||||
```
|
||||
|
||||
|
Reference in New Issue
Block a user